login
A008479
Number of numbers <= n with same prime factors as n.
31
1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 4, 2, 1, 3, 2, 1, 1, 1, 5, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 6, 2, 4, 1, 2, 1, 7, 1, 3, 1, 1, 1, 2, 1, 1, 2, 6, 1, 1, 1, 2, 1, 1, 1, 8, 1, 1, 3, 2, 1, 1, 1, 5, 4, 1, 1, 2, 1, 1, 1, 3, 1, 3, 1, 2, 1, 1, 1, 9
OFFSET
1,4
COMMENTS
For n > 1, a(n) gives the (one-based) index of the row where n is located in arrays A284311 and A285321 or respectively, index of the column where n is in A284457. A285329 gives the other index. - _Antti Karttunen_, Apr 17 2017
LINKS
P. Erdős, T. Motzkin, Problem 5735, Amer. Math. Monthly, 78 (1971), 680-681. (Incorrect solution!)
H. N. Shapiro, Problem 5735, Amer. Math. Monthly, 97 (1990), 937.
FORMULA
a(n) = Sum_{k=1..n} (floor(n^k/k)-floor((n^k-1)/k))*(floor(k^n/n)-floor((k^n-1)/n)). - _Anthony Browne_, May 20 2016
If A008683(n) <> 0 [when n is squarefree, A005117], a(n) = 1, otherwise a(n) = 1+a(A285328(n)). - _Antti Karttunen_, Apr 17 2017
MAPLE
N:= 100: # to get a(1)..a(N)
V:= Vector(N):
V[1]:= 1:
for n from 2 to N do
if V[n] = 0 then
S:= {n};
for p in numtheory:-factorset(n) do
S := S union {seq(seq(s*p^k, k=1..floor(log[p](N/s))), s=S)};
od:
S:= sort(convert(S, list));
for k from 1 to nops(S) do V[S[k]]:= k od:
fi
od:
convert(V, list); # _Robert Israel_, May 20 2016
MATHEMATICA
PkTbl=Prepend[ Array[ Times @@ First[ Transpose[ FactorInteger[ # ] ] ]&, 100, 2 ], 1 ]; 1+Array[ Count[ Take[ PkTbl, #-1 ], PkTbl[ [ # ] ] ]&, Length[ PkTbl ] ]
Count[#, k_ /; k == Last@ #] & /@ Function[s, Take[s, #] & /@ Range@ Length@ s]@ Array[Map[First, FactorInteger@ #] &, 120] (* or *)
Table[Sum[(Floor[n^k/k] - Floor[(n^k - 1)/k]) (Floor[k^n/n] - Floor[(k^n - 1)/n]), {k, n}], {n, 120}] (* _Michael De Vlieger_, May 20 2016 *)
PROG
(Scheme) (define (A008479 n) (if (not (zero? (A008683 n))) 1 (+ 1 (A008479 (A285328 n))))) ;; _Antti Karttunen_, Apr 17 2017
(PARI) a(n)=my(f=factor(n)[, 1], s); forvec(v=vector(#f, i, [1, logint(n, f[i])]), if(prod(i=1, #f, f[i]^v[i])<=n, s++)); s \\ _Charles R Greathouse IV_, Oct 19 2017
CROSSREFS
Sequence in context: A303915 A322885 A292582 * A331178 A227350 A107345
KEYWORD
nonn,easy
AUTHOR
_Jeffrey Shallit_, _Olivier Gérard_
STATUS
approved