login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227350
Product of lengths of runs of 0-bits in binary representation of n, or 1 if no nonleading zeros present.
7
1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 4, 3, 2, 2, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 5, 4, 3, 3, 4, 2, 2, 2, 3, 2, 1, 1, 2, 1, 1, 1, 4, 3, 2, 2, 2, 1, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1, 6, 5, 4, 4, 6, 3, 3, 3, 6, 4, 2, 2, 4, 2, 2, 2, 4, 3, 2, 2, 2, 1, 1
OFFSET
0,5
LINKS
FORMULA
A167489(n) = a(n) * A227349(n).
A227193(n) = A227349(n) - a(n).
A227355(n) = a(A003714(n)).
A003714 gives the only terms k for which a(k) = A167489(k).
EXAMPLE
a(0) = 1, regardless whether one considers the binary representation of zero to have one zero or no digits at all, because also the empty product is 1. Similarly for any numbers of form (2^k)-1, where no nonleading 0-bits occur, the result of an empty product is always 1.
a(8) = 3, as 8 is "1000" in binary, and there is one run of three 0-bits present.
a(68) = 6, 68 is "1000100" in binary, there are one run of three 0-bits and one run of two 0-bits, thus 2*3 = 6.
MAPLE
a:= proc(n) local i, m, r; m, r:= n, 1;
while m>0 do
for i from 0 while irem(m, 2, 'h')=0 do m:=h od;
while irem(m, 2, 'h')=1 do m:=h od;
r:= r*max(i, 1)
od; r
end:
seq(a(n), n=0..100); # Alois P. Heinz, Jul 11 2013
MATHEMATICA
a[n_] := Times @@ Length /@ Select[Split @ IntegerDigits[n, 2], #[[1]] == 0 &]; Array[a, 100, 0] (* Jean-François Alcover, Mar 03 2016 *)
PROG
(Scheme)
(define (A227350 n) (apply * (bisect (reverse (binexp->runcount1list n)) (modulo n 2))))
(define (bisect lista parity) (let loop ((lista lista) (i 0) (z (list))) (cond ((null? lista) (reverse! z)) ((eq? i parity) (loop (cdr lista) (modulo (1+ i) 2) (cons (car lista) z))) (else (loop (cdr lista) (modulo (1+ i) 2) z)))))
(define (binexp->runcount1list n) (if (zero? n) (list) (let loop ((n n) (rc (list)) (count 0) (prev-bit (modulo n 2))) (if (zero? n) (cons count rc) (if (eq? (modulo n 2) prev-bit) (loop (floor->exact (/ n 2)) rc (1+ count) (modulo n 2)) (loop (floor->exact (/ n 2)) (cons count rc) 1 (modulo n 2)))))))
CROSSREFS
Cf. A023416 (sum of lengths of runs of 0-bits), A167489, A227349, A227355, A227193.
Sequence in context: A292582 A008479 A331178 * A107345 A358780 A336736
KEYWORD
nonn,base,look
AUTHOR
Antti Karttunen, Jul 08 2013
STATUS
approved