0,4

The same sequence also gives the product for the lengths of zero-runs only, as by definition, no two consecutive 1's can occur in Fibonacci number system (aka Zeckendorf representation), thus any 1's present contribute just *1 to the total product.

Antti Karttunen, Table of n, a(n) for n = 0..10946

a(n) = A167489(A003714(n)) = A227350(A003714(n)).

a(A227352(A005408(n))) = A167489(n).

For n>= 3, a(A000045(n)) = n-2.

(Scheme) (define (A227355 n) (A167489 (A003714 n)))(define (A227355v2 n) (A227350 (A003714 n))) ;; Alternative definition.

Cf. A167489, A003714, A102364, A014417, A227350.

Sequence in context: A049085 A193173 A331581 * A226080 A167287 A007336

Adjacent sequences: A227352 A227353 A227354 * A227356 A227357 A227358

nonn,base

Antti Karttunen, Jul 08 2013

approved