The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A285321 Square array A(1,k) = A019565(k), A(n,k) = A065642(A(n-1,k)), read by descending antidiagonals. 10
 2, 3, 4, 6, 9, 8, 5, 12, 27, 16, 10, 25, 18, 81, 32, 15, 20, 125, 24, 243, 64, 30, 45, 40, 625, 36, 729, 128, 7, 60, 75, 50, 3125, 48, 2187, 256, 14, 49, 90, 135, 80, 15625, 54, 6561, 512, 21, 28, 343, 120, 225, 100, 78125, 72, 19683, 1024 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS A permutation of the natural numbers > 1. Otherwise like array A284311, but the columns come in different order. LINKS Antti Karttunen, Table of n, a(n) for n = 1..120; the first 15 antidiagonals of array FORMULA A(1,k) = A019565(k), A(n,k) = A065642(A(n-1,k)). For all n >= 2: A(A008479(n), A087207(n)) = n. EXAMPLE The top left 12x6 corner of the array:    2,   3,  6,     5,  10,  15,  30,      7,  14,  21,  42,   35    4,   9, 12,    25,  20,  45,  60,     49,  28,  63,  84,  175    8,  27, 18,   125,  40,  75,  90,    343,  56, 147, 126,  245   16,  81, 24,   625,  50, 135, 120,   2401,  98, 189, 168,  875   32, 243, 36,  3125,  80, 225, 150,  16807, 112, 441, 252, 1225   64, 729, 48, 15625, 100, 375, 180, 117649, 196, 567, 294, 1715 MATHEMATICA a065642[n_] := Module[{k}, If[n == 1, Return[1], k = n + 1; While[ EulerPhi[k]/k != EulerPhi[n]/n, k++]]; k]; A[1, k_] := Times @@ Prime[Flatten[Position[#, 1]]]&[Reverse[ IntegerDigits[k, 2]]]; A[n_ /; n > 1, k_] := A[n, k] = a065642[A[n - 1, k]]; Table[A[n - k + 1, k], {n, 1, 10}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Nov 17 2019 *) PROG (Scheme) (define (A285321 n) (A285321bi (A002260 n) (A004736 n))) (define (A285321bi row col) (if (= 1 row) (A019565 col) (A065642 (A285321bi (- row 1) col)))) (Python) from operator import mul from sympy import prime, primefactors def a019565(n): return reduce(mul, (prime(i+1) for i, v in enumerate(bin(n)[:1:-1]) if v == '1')) if n > 0 else 1 # This function from Chai Wah Wu def a007947(n): return 1 if n<2 else reduce(mul, primefactors(n)) def a065642(n):     if n==1: return 1     r=a007947(n)     n = n + r     while a007947(n)!=r:         n+=r     return n def A(n, k): return a019565(k) if n==1 else a065642(A(n - 1, k)) for n in range(1, 11): print([A(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Apr 18 2017 CROSSREFS Transpose: A285322. Cf. A019565, A065642. Cf. A008479 (index of the row where n is located), A087207 (of the column). Cf. arrays A284311, A285325, also A285332. Sequence in context: A207826 A035312 A056230 * A253561 A119919 A036561 Adjacent sequences:  A285318 A285319 A285320 * A285322 A285323 A285324 KEYWORD nonn,tabl AUTHOR Antti Karttunen, Apr 17 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 27 21:21 EDT 2021. Contains 346316 sequences. (Running on oeis4.)