OFFSET
1,1
COMMENTS
A permutation of the natural numbers > 1.
T(1,k)= A005117(m) with m > 1; terms in column k = T(1,k) * A162306(T(1,k)) only not bounded by T(1,k). Let T(1,k) = b. Terms in column k are multiples of b and numbers c such that c | b^e with e >= 0. Alternatively, terms in column k are multiples bc with c those numbers whose prime divisors p also divide b. - Michael De Vlieger, Mar 25 2017
LINKS
Alois P. Heinz, Antidiagonals n = 1..141, flattened
FORMULA
From Antti Karttunen, Apr 17 2017: (Start)
(End)
EXAMPLE
Array starts:
2 3 5 6 7 10 11 13 14 15
4 9 25 12 49 20 121 169 28 45
8 27 125 18 343 40 1331 2197 56 75
16 81 625 24 2401 50 14641 371293 98 135
32 243 3125 36 16807 80 161051 4826809 112 225
64 729 15625 48 117649 100 1771561 62748517 196 375
128 2187 78125 54 823543 160 19487171 815730721 224 405
Column 6 is: T(1,6) = 2*5; T(2,6) = 2^2*5; T(3,6) = 2^3*5; T(4,6) = 2*5^2; T(5,6) = 2^4*5, etc.
MATHEMATICA
f[n_, k_: 1] := Block[{c = 0, sgn = Sign[k], sf}, sf = n + sgn; While[c < Abs[k], While[! SquareFreeQ@ sf, If[sgn < 0, sf--, sf++]]; If[sgn < 0, sf--, sf++]; c++]; sf + If[sgn < 0, 1, -1]] (* after Robert G. Wilson v at A005117 *); T[n_, k_] := T[n, k] = Which[And[n == 1, k == 1], 2, k == 1, f@ T[n - 1, k], PrimeQ@ T[n, 1], T[n, 1]^k, True, Module[{j = T[n, k - 1]/T[n, 1] + 1}, While[PowerMod[T[n, 1], j, j] != 0, j++]; j T[n, 1]]]; Table[T[n - k + 1, k], {n, 10}, {k, n}] // Flatten (* Michael De Vlieger, Mar 25 2017 *)
PROG
CROSSREFS
Cf. A005117 (squarefree numbers), A033845 (column 4), columns 1,2,3,5 are powers of primes, A033846 (column 6), A033847 (column 9), A033849 (column 10).
The columns that are powers of primes have indices A071403(n) - 1. - Michel Marcus, Mar 24 2017
See also A007947; the k-th column of the array corresponds to the numbers with radical A005117(k+1). - Rémy Sigrist, Mar 24 2017
Cf. A284457 (this sequence read by antidiagonals upwards), A285321 (a similar array, but columns come in different order).
Cf. A065642.
KEYWORD
nonn,tabl
AUTHOR
Bob Selcoe, Mar 24 2017
STATUS
approved