OFFSET
1,1
COMMENTS
The first column contains the squarefree numbers A005117; each row lists all numbers having the same prime divisors. If T[m,1] is prime then the row contains the powers of that prime. Yields A182944 if only these rows with prime powers (A000961) are kept. - M. F. Hasler, Mar 27 2017
See A284311 for further details.
LINKS
Alois P. Heinz, Antidiagonals n = 1..141, flattened
FORMULA
EXAMPLE
Array starts:
2 4 8 16 32 64 128
3 9 27 81 243 729 2187
5 25 125 625 3125 15625 78125
6 12 18 24 36 48 54
7 49 343 2401 16807 117649 823543
10 20 40 50 80 100 160
...
Row 6 is: T[1,6] = 2*5; T[2,6] = 2^2*5; T[3,6] = 2^3*5; T[4,6] = 2*5^2; T[5,6] = 2^4*5, etc.
MATHEMATICA
f[n_, k_: 1] := Block[{c = 0, sgn = Sign[k], sf}, sf = n + sgn; While[c < Abs@ k, While[! SquareFreeQ@ sf, If[sgn < 0, sf--, sf++]]; If[sgn < 0, sf--, sf++]; c++]; sf + If[sgn < 0, 1, -1]] (* after Robert G. Wilson v at A005117 *); T[n_, k_] := T[n, k] = Which[And[n == 1, k == 1], 2, k == 1, f@ T[n - 1, k], PrimeQ@ T[n, 1], T[n, 1]^k, True, Module[{j = T[n, k - 1]/T[n, 1] + 1}, While[PowerMod[T[n, 1], j, j] != 0, j++]; j T[n, 1]]]; Table[T[n - k + 1, k], {n, 10}, {k, n, 1, -1}] // Flatten
PROG
(PARI) A284457(m, n)={for(a=2, m^2+1, (core(a)!=a||m--)&&next; m=factor(a)[, 1]; for(k=1, 9e9, factor(k*a)[, 1]==m&&!n--&&return(k*a)))} \\ M. F. Hasler, Mar 27 2017
(Scheme) (define (A284457 n) (A284311bi (A004736 n) (A002260 n))) ;; For A284311bi, see A284311. - Antti Karttunen, Apr 17 2017
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Bob Selcoe, Mar 27 2017
EXTENSIONS
Edited by M. F. Hasler, Mar 27 2017
STATUS
approved