login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A284457
Square array whose rows list numbers with the same squarefree kernel (A007947): Transpose of A284311.
10
2, 4, 3, 8, 9, 5, 16, 27, 25, 6, 32, 81, 125, 12, 7, 64, 243, 625, 18, 49, 10, 128, 729, 3125, 24, 343, 20, 11, 256, 2187, 15625, 36, 2401, 40, 121, 13, 512, 6561, 78125, 48, 16807, 50, 1331, 169, 14, 1024, 19683, 390625, 54, 117649, 80, 14641, 2197, 28, 15
OFFSET
1,1
COMMENTS
The first column contains the squarefree numbers A005117; each row lists all numbers having the same prime divisors. If T[m,1] is prime then the row contains the powers of that prime. Yields A182944 if only these rows with prime powers (A000961) are kept. - M. F. Hasler, Mar 27 2017
See A284311 for further details.
LINKS
FORMULA
From Antti Karttunen, Apr 17 2017: (Start)
A(n,1) = A005117(1+n), A(n,k) = A065642(A(n,k-1)). [A "dispersion" of A065642.]
A(A285329(n), A008479(n)) = n for all n >= 2.(End)
EXAMPLE
Array starts:
2 4 8 16 32 64 128
3 9 27 81 243 729 2187
5 25 125 625 3125 15625 78125
6 12 18 24 36 48 54
7 49 343 2401 16807 117649 823543
10 20 40 50 80 100 160
...
Row 6 is: T[1,6] = 2*5; T[2,6] = 2^2*5; T[3,6] = 2^3*5; T[4,6] = 2*5^2; T[5,6] = 2^4*5, etc.
MATHEMATICA
f[n_, k_: 1] := Block[{c = 0, sgn = Sign[k], sf}, sf = n + sgn; While[c < Abs@ k, While[! SquareFreeQ@ sf, If[sgn < 0, sf--, sf++]]; If[sgn < 0, sf--, sf++]; c++]; sf + If[sgn < 0, 1, -1]] (* after Robert G. Wilson v at A005117 *); T[n_, k_] := T[n, k] = Which[And[n == 1, k == 1], 2, k == 1, f@ T[n - 1, k], PrimeQ@ T[n, 1], T[n, 1]^k, True, Module[{j = T[n, k - 1]/T[n, 1] + 1}, While[PowerMod[T[n, 1], j, j] != 0, j++]; j T[n, 1]]]; Table[T[n - k + 1, k], {n, 10}, {k, n, 1, -1}] // Flatten
PROG
(PARI) A284457(m, n)={for(a=2, m^2+1, (core(a)!=a||m--)&&next; m=factor(a)[, 1]; for(k=1, 9e9, factor(k*a)[, 1]==m&&!n--&&return(k*a)))} \\ M. F. Hasler, Mar 27 2017
(Scheme) (define (A284457 n) (A284311bi (A004736 n) (A002260 n))) ;; For A284311bi, see A284311. - Antti Karttunen, Apr 17 2017
CROSSREFS
Cf. A008479 (index of the column where n is located), A285329 (of the row).
Sequence in context: A304408 A048767 A269851 * A365656 A182944 A269385
KEYWORD
nonn,tabl
AUTHOR
Bob Selcoe, Mar 27 2017
EXTENSIONS
Edited by M. F. Hasler, Mar 27 2017
STATUS
approved