login
A284459
Permutation of the positive integers: this permutation transforms the enumeration system of positive irreducible fractions A002487/A002487' (Calkin-Wilf) into the enumeration system A245327/A245328, and A162911/A162912 (Drib) into A020651/A020650 (Yu-Ting inverted).
9
1, 2, 3, 6, 5, 4, 7, 10, 13, 12, 11, 14, 9, 8, 15, 26, 21, 20, 27, 22, 25, 24, 23, 18, 29, 28, 19, 30, 17, 16, 31, 42, 53, 52, 43, 54, 41, 40, 55, 50, 45, 44, 51, 46, 49, 48, 47, 58, 37, 36, 59, 38, 57, 56, 39, 34, 61, 60, 35, 62, 33, 32, 63
OFFSET
1,2
COMMENTS
The inverse permutation is A284460.
FORMULA
a(n) = A258996(A231551(n)) = A231551(A092569(n)), n > 0 . - Yosu Yurramendi, Apr 10 2017
PROG
(R)
maxrow <- 12 # by choice
a <- 1
b01 <- 1
for(m in 0:maxrow){
b01 <- c(b01, c(1-b01[2^m:(2^(m+1)-1)], b01[2^m:(2^(m+1)-1)]) )
for(k in 0:(2^m-1)){
a[2^(m+1) + k] <- a[2^m + k] + 2^(m + b01[2^(m+1) + k])
a[2^(m+1) + 2^m + k] <- a[2^m + k] + 2^(m + b01[2^(m+1) + 2^m + k])
}}
a
# Yosu Yurramendi, Mar 27 2017
(R)
maxblock <- 7 # by choice
a <- 1:3
for(n in 4:2^maxblock){
ones <- which(as.integer(intToBits(n)) == 1)
nbit <- as.integer(intToBits(n))[1:tail(ones, n = 1)]
anbit <- nbit
for(i in 2:(length(anbit) - 1))
anbit[i] <- 1 - bitwXor(anbit[i], anbit[i-1])
a <- c(a, sum(anbit*2^(0:(length(anbit) - 1))))
}
a
# Yosu Yurramendi, Apr 25 2021
KEYWORD
nonn
AUTHOR
Yosu Yurramendi, Mar 27 2017
STATUS
approved