OFFSET
0,3
COMMENTS
Consider n boys and n girls, each boy secretly loving a girl and vice versa. The probability that no couple could be formed is a(n)/n^(2n).
a(n) is the number of pairs of binary matrices n X n (M, N), M having only one 1 per row, N having only one 1 per column, such that M + N has no coefficient equal to 2.
Limit_{n -> infinity} a(n)/n^(2n) = 1/e.
LINKS
Robert Israel, Table of n, a(n) for n = 0..214
Math StackExchange, An unexpected application of non-trivial combinatorics, 2014.
Math StackExchange, Couple Probability, 2014.
Eric Weisstein's MathWorld, Confluent Hypergeometric Function of the Second Kind
FORMULA
a(n) = Sum_{k=0..n} (-1)^k * binomial(n,k)^2 * k! * n^(2*(n-k)).
EXAMPLE
For two boys A,B and two girls A',B', the a(2) possibilities are:
A loves A' who loves B who loves B' who loves A;
A loves B' who loves B who loves A' who loves A.
MAPLE
a:=n->add((-1)^k*binomial(n, k)^2*k!*n^(2*(n-k)), k=0..n):
seq(a(n), n=0..15);
MATHEMATICA
Table[Sum[(-1)^k Binomial[n, k]^2 * k! * n^(2*(n - k)), {k, 0, n}], {n, 1, 15}] (* Indranil Ghosh, Mar 27 2017 *)
Table[HypergeometricU[-n, 1, n^2], {n, 1, 15}] (* Jean-François Alcover, Mar 29 2017 *)
PROG
(PARI) a(n) = sum(k=0, n, (-1)^k * binomial(n, k)^2 * k! * n^(2*(n-k))); \\ Michel Marcus, Apr 04 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert FERREOL, Mar 27 2017
STATUS
approved