

A350558


a(n) = (n1)!^(2n).


2



1, 1, 64, 1679616, 63403380965376, 8916100448256000000000000, 10061319724179153710638694400000000000000, 173335925289013982808975076100021379095592960000000000000000, 79317573895713454077105543742169655162315106629579798748776628224000000000000000000
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

a(n) is the number of ways to arrange the remaining preferences in the stable marriage problem of order n after the first choice of each participant has been determined. The first choices are often treated separately in order to avoid mutual first choices, or to avoid multiple participants with the same first choice.


LINKS

Matvey Borodin, Eric Chen, Aidan Duncan, Tanya Khovanova, Boyan Litchev, Jiahe Liu, Veronika Moroz, Matthew Qian, Rohith Raghavan, Garima Rastogi, and Michael Voigt, Sequences of the Stable Matching Problem, arXiv:2201.00645 [math.HO], 2021.


FORMULA

a(n) = (n1)!^(2n).
a(n) = A343699(n)/((n1)!*n^2*(n^21)).


MATHEMATICA

Table[(n1)!^(2n), {n, 1, 9}]


CROSSREFS



KEYWORD

nonn


AUTHOR



STATUS

approved



