login
A350557
Triangle T(n,k) read by rows with T(n,0) = (2*n)! / (2^n * n!) for n >= 0 and T(n,k) = (Sum_{i=k..n} binomial(i-1,k-1) * 2^i * i! / (2*i)!) * (2*n)! / (2^n * n!) for 0 < k <= n.
0
1, 1, 1, 3, 4, 1, 15, 21, 7, 1, 105, 148, 52, 10, 1, 945, 1333, 472, 96, 13, 1, 10395, 14664, 5197, 1066, 153, 16, 1, 135135, 190633, 67567, 13873, 2009, 223, 19, 1, 2027025, 2859496, 1013512, 208116, 30170, 3380, 306, 22, 1
OFFSET
0,4
FORMULA
T(n,n) = 1.
T(n,k) = binomial(n-1,k-1) + (2*n - 1) * T(n-1,k) for 0 < k < n.
Conjecture: M(n,k) = (-1)^(n-k) * T(n,k) is matrix inverse of A350512.
EXAMPLE
Triangle T(n,k) for 0 <= k <= n starts:
n\k : 0 1 2 3 4 5 6 7 8
=================================================================
0 : 1
1 : 1 1
2 : 3 4 1
3 : 15 21 7 1
4 : 105 148 52 10 1
5 : 945 1333 472 96 13 1
6 : 10395 14664 5197 1066 153 16 1
7 : 135135 190633 67567 13873 2009 223 19 1
8 : 2027025 2859496 1013512 208116 30170 3380 306 22 1
etc.
MATHEMATICA
Flatten[Table[If[k==0, (2n)!/(2^n n!), Sum[Binomial[i-1, k-1]2^i i!/(2i)!, {i, k, n}](2n)!/(2^n n!)], {n, 0, 8}, {k, 0, n}]] (* Stefano Spezia, Jan 06 2022 *)
CROSSREFS
Cf. A001147 (column 0), A286286 (column 1), A249349 (column 2).
Cf. A000007 (alternating row sums).
Cf. A350512.
Sequence in context: A100326 A303728 A321627 * A028338 A039757 A136228
KEYWORD
nonn,easy,tabl
AUTHOR
Werner Schulte, Jan 05 2022
STATUS
approved