login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A350557 Triangle T(n,k) read by rows with T(n,0) = (2*n)! / (2^n * n!) for n >= 0 and T(n,k) = (Sum_{i=k..n} binomial(i-1,k-1) * 2^i * i! / (2*i)!) * (2*n)! / (2^n * n!) for 0 < k <= n. 0
1, 1, 1, 3, 4, 1, 15, 21, 7, 1, 105, 148, 52, 10, 1, 945, 1333, 472, 96, 13, 1, 10395, 14664, 5197, 1066, 153, 16, 1, 135135, 190633, 67567, 13873, 2009, 223, 19, 1, 2027025, 2859496, 1013512, 208116, 30170, 3380, 306, 22, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,4
LINKS
FORMULA
T(n,n) = 1.
T(n,k) = binomial(n-1,k-1) + (2*n - 1) * T(n-1,k) for 0 < k < n.
Conjecture: M(n,k) = (-1)^(n-k) * T(n,k) is matrix inverse of A350512.
EXAMPLE
Triangle T(n,k) for 0 <= k <= n starts:
n\k : 0 1 2 3 4 5 6 7 8
=================================================================
0 : 1
1 : 1 1
2 : 3 4 1
3 : 15 21 7 1
4 : 105 148 52 10 1
5 : 945 1333 472 96 13 1
6 : 10395 14664 5197 1066 153 16 1
7 : 135135 190633 67567 13873 2009 223 19 1
8 : 2027025 2859496 1013512 208116 30170 3380 306 22 1
etc.
MATHEMATICA
Flatten[Table[If[k==0, (2n)!/(2^n n!), Sum[Binomial[i-1, k-1]2^i i!/(2i)!, {i, k, n}](2n)!/(2^n n!)], {n, 0, 8}, {k, 0, n}]] (* Stefano Spezia, Jan 06 2022 *)
CROSSREFS
Cf. A001147 (column 0), A286286 (column 1), A249349 (column 2).
Cf. A000007 (alternating row sums).
Cf. A350512.
Sequence in context: A100326 A303728 A321627 * A028338 A039757 A136228
KEYWORD
nonn,easy,tabl
AUTHOR
Werner Schulte, Jan 05 2022
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 11:26 EST 2023. Contains 367650 sequences. (Running on oeis4.)