login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350512
Triangle read by rows with T(n,0) = 1 for n >= 0 and T(n,k) = binomial(n-1,k-1)*(2*k*(n-k) + n)/k for 0 < k <= n.
1
1, 1, 1, 1, 4, 1, 1, 7, 7, 1, 1, 10, 18, 10, 1, 1, 13, 34, 34, 13, 1, 1, 16, 55, 80, 55, 16, 1, 1, 19, 81, 155, 155, 81, 19, 1, 1, 22, 112, 266, 350, 266, 112, 22, 1, 1, 25, 148, 420, 686, 686, 420, 148, 25, 1, 1, 28, 189, 624, 1218, 1512, 1218, 624, 189, 28, 1
OFFSET
0,5
COMMENTS
Depending on some fixed integer m there is a family of number triangles T(m; n,k) for 0 <= k <= n with entries: T(m; n,0) = 1 for n >= 0 and T(m; n,k) = binomial(n-1,k-1)*(m*k*(n-k) + n)/k for 0 < k <= n.
Special cases: m=0 (A007318), m=1 (A103450), and m=2 (this triangle).
Further properties: T(m; n,n) = 1 for n >= 0; T(m; n,k) = T(m; n,n-k) for 0 <= k <= n; T(m; 2*n,n) = A000108(n)*A086270(m,n+1) for n >= 0 and m > 0.
T(m; n,k) = T(m; n-1,k) + T(m; n-1,k-1) + m*binomial(n-2,k-1) for 0 < k < n.
G.f. of column k: (1 + m*k*x) * x^k / (1 - x)^(k+1).
G.f.: A(x, t) = (1 - (1+x)*t + m*x*t^2) / (1 - (1+x)*t)^2.
T(m; n,k) = [x^k] (1 + (m*n - m + 2)*x + x^2) * (1 + x)^(n-2) for n > 0.
FORMULA
T(n, n) = 1; T(n, k) = T(n, n-k).
T(2*n, n) = (n+1)^2 * A000108(n).
T(n, k) = T(n-1, k) + T(n-1, k-1) + 2 * binomial(n-2,k-1) for 0 < k < n.
G.f. of column k: (1 + 2*k*x) * x^k / (1 - x)^(k+1).
G.f.: A(x,t) = (1 - (1 + x) * t + 2 * x * t^2) / (1 - (1 + x) * t)^2.
T(n,k) = [x^k] (1 + 2 * n * x + x^2) * (1 + x)^(n-2) for n > 0.
EXAMPLE
Triangle T(n, k) for 0 <= k <= n starts:
n\k : 0 1 2 3 4 5 6 7 8 9
=================================================
0 : 1
1 : 1 1
2 : 1 4 1
3 : 1 7 7 1
4 : 1 10 18 10 1
5 : 1 13 34 34 13 1
6 : 1 16 55 80 55 16 1
7 : 1 19 81 155 155 81 19 1
8 : 1 22 112 266 350 266 112 22 1
9 : 1 25 148 420 686 686 420 148 25 1
etc.
MATHEMATICA
Flatten[Table[Join[{1}, Table[Binomial[n-1, k-1](2*k*(n-k) + n)/k, {k, n}]], {n, 0, 10}]] (* Stefano Spezia, Jan 06 2022 *)
CROSSREFS
Row sums are A057711(n+1).
Sequence in context: A296180 A157172 A131060 * A124376 A047671 A081577
KEYWORD
nonn,easy,tabl
AUTHOR
Werner Schulte, Jan 02 2022
STATUS
approved