login
A081577
Pascal-(1,2,1) array read by antidiagonals.
30
1, 1, 1, 1, 4, 1, 1, 7, 7, 1, 1, 10, 22, 10, 1, 1, 13, 46, 46, 13, 1, 1, 16, 79, 136, 79, 16, 1, 1, 19, 121, 307, 307, 121, 19, 1, 1, 22, 172, 586, 886, 586, 172, 22, 1, 1, 25, 232, 1000, 2086, 2086, 1000, 232, 25, 1, 1, 28, 301, 1576, 4258, 5944, 4258, 1576, 301, 28, 1
OFFSET
0,5
COMMENTS
One of a family of Pascal-like arrays. A007318 is equivalent to the (1,0,1)-array. A008288 is equivalent to the (1,1,1)-array. Rows include A016777, A038764, A081583, A081584. Coefficients of the row polynomials in the Newton basis are given by A013610.
As a number triangle, this is the Riordan array (1/(1-x), x(1+2x)/(1-x)). It has row sums A002605 and diagonal sums A077947. - Paul Barry, Jan 24 2005
All entries are == 1 mod 3. - Roger L. Bagula, Oct 04 2008
Row sums are A002605. - Roger L. Bagula, Dec 09 2008
As a number triangle T, T(2n,n)=A069835(n). - Philippe Deléham, Jan 10 2014
LINKS
Paul Barry, On Integer-Sequence-Based Constructions of Generalized Pascal Triangles, J. Integer Sequ., Vol. 9 (2006), Article 06.2.4.
Paul Barry, The Central Coefficients of a Family of Pascal-like Triangles and Colored Lattice Paths, J. Int. Seq., Vol. 22 (2019), Article 19.1.3.
Shanghua Zheng, Li Guo, and Huizhen Qiu, Extended Rota-Baxter algebras, diagonally colored Delannoy paths and Hopf algebras, arXiv:2401.11363 [math.RA], 2024. See pp. 44-45.
FORMULA
Square array T(n, k) defined by T(n, 0) = T(0, k) = 1, T(n, k) = T(n, k-1) + 2*T(n-1, k-1) + T(n-1, k).
Rows are the expansions of (1+2*x)^k/(1-x)^(k+1).
G.f.: 1/(1-x-y-2*x*y). - Ralf Stephan, Apr 28 2004
T(n,k) = Sum_{j=0..n} binomial(k,j-k)*binomial(n+k-j,k)*2^(j-k). - Paul Barry, Oct 23 2006
a(n) = 2*{0, a(n-2), 0} + {0, a(n-1)} + {a(n-1), 0}. - Roger L. Bagula, Dec 09 2008
T(n, k) = Hypergeometric2F1([-k, k-n], [1], 3). - Jean-François Alcover, May 24 2013
The e.g.f. for the n-th subdiagonal, n = 0,1,2,..., equals exp(x)*P(n,x), where P(n,x) is the polynomial Sum_{k = 0..n} binomial(n,k)*(3*x)^k/k!. For example, the e.g.f. for the second subdiagonal is exp(x)*(1 + 6*x + 9*x^2/2) = 1 + 7*x + 22*x^2/2! + 46*x^3/3! + 79*x^4/4! + 121*x^5/5! + .... - Peter Bala, Mar 05 2017
Sum_{k=0..n} T(n,k) = A002605(n). - G. C. Greubel, May 25 2021
EXAMPLE
Square array begins as:
1, 1, 1, 1, 1, ... A000012;
1, 4, 7, 10, 13, ... A016777;
1, 7, 22, 46, 79, ... A038764;
1, 10, 46, 136, 307, ... A081583;
1, 13, 79, 307, 886, ... A081584;
From Roger L. Bagula, Dec 09 2008: (Start)
As a triangle this begins:
1;
1, 1;
1, 4, 1;
1, 7, 7, 1;
1, 10, 22, 10, 1;
1, 13, 46, 46, 13, 1;
1, 16, 79, 136, 79, 16, 1;
1, 19, 121, 307, 307, 121, 19, 1;
1, 22, 172, 586, 886, 586, 172, 22, 1;
1, 25, 232, 1000, 2086, 2086, 1000, 232, 25, 1;
1, 28, 301, 1576, 4258, 5944, 4258, 1576, 301, 28, 1; (End)
MATHEMATICA
a[0]={1}; a[1]={1, 1}; a[n_]:= a[n]= 2*Join[{0}, a[n-2], {0}] + Join[{0}, a[n-1]] + Join[a[n-1], {0}]; Table[a[n], {n, 0, 10}]//Flatten (* Roger L. Bagula, Dec 09 2008 *)
Table[Hypergeometric2F1[-k, k-n, 1, 3], {n, 0, 10}, {k, 0, n}]//Flatten (* Jean-François Alcover, May 24 2013 *)
PROG
(Haskell)
a081577 n k = a081577_tabl !! n !! k
a081577_row n = a081577_tabl !! n
a081577_tabl = map fst $ iterate
(\(us, vs) -> (vs, zipWith (+) (map (* 2) ([0] ++ us ++ [0])) $
zipWith (+) ([0] ++ vs) (vs ++ [0]))) ([1], [1, 1])
-- Reinhard Zumkeller, Mar 16 2014
(Magma)
A081577:= func< n, k | (&+[Binomial(k, j)*Binomial(n-j, k)*2^j: j in [0..n-k]]) >;
[A081577(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, May 25 2021
(Sage) flatten([[hypergeometric([-k, k-n], [1], 3).simplify() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 25 2021
CROSSREFS
Cf. Pascal-(1,a,1) array: A123562 (a=-3), A098593 (=-2), A000012 (a=-1), A007318 (a=0), A008288 (a=1), A081577(a=2), A081578 (a=3), A081579 (a=4), A081580 (a=5), A081581 (a=6), A081582 (a=7), A143683(a=8). [From Roger L. Bagula, Dec 09 2008], Philippe Deléham, Jan 10 2014, Mar 16 2014.
Sequence in context: A350512 A124376 A047671 * A146986 A304141 A305047
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Mar 23 2003
STATUS
approved