login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A123562
Pascal-(1,-3,1) array, read by antidiagonals.
11
1, 1, 1, 1, -1, 1, 1, -3, -3, 1, 1, -5, -3, -5, 1, 1, -7, 1, 1, -7, 1, 1, -9, 9, 11, 9, -9, 1, 1, -11, 21, 17, 17, 21, -11, 1, 1, -13, 37, 11, 1, 11, 37, -13, 1, 1, -15, 57, -15, -39, -39, -15, 57, -15, 1, 1, -17, 81, -69, -87, -81, -87, -69, 81, -17, 1
OFFSET
0,8
COMMENTS
Riordan array (1/(1-x), x*(1-3x)/(1-x)).
FORMULA
Sum_{k=0..n} T(n,k) = A088137(n+1).
T(n,k) = T(n-1,k-1) + T(n-1,k) - 3*T(n-2,k-1), n>0.
From Paul Barry, Jan 24 2011: (Start)
T(n,k) = Sum_{j=0..n} binomial(n-j,k)*binomial(k,j)*(-3)^j.
T(n,k) = [k<=n]*Hypergeometric2F1(-k,k-n,1,-2). (End)
E.g.f. for the n-th subdiagonal: exp(x)*P(n,x), where P(n,x) is the polynomial Sum_{k = 0..n} binomial(n,k)*(-2*x)^k/k!. For example, the e.g.f. for the second subdiagonal is exp(x)*(1 - 4*x + 4*x^2/2) = 1 - 3*x - 3*x^2/2! + x^3/3! + 9*x^4/4! + 21*x^5/5! + .... - Peter Bala, Mar 05 2017
EXAMPLE
Triangle begins:
1;
1, 1;
1, -1, 1;
1, -3, -3, 1;
1, -5, -3, -5, 1;
1, -7, 1, 1, -7, 1;
1, -9, 9, 11, 9, -9, 1;
1, -11, 21, 17, 17, 21, -11, 1;
1, -13, 37, 11, 1, 11, 37, -13, 1;
MATHEMATICA
T[n_, k_] := Sum[Binomial[n - j, k]*Binomial[k, j]*(-3)^j, {j, 0, n}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Oct 15 2017 *)
PROG
(PARI) for(n=0, 10, for(k=0, n, print1(sum(j=0, n, binomial(n-j, k)* binomial(k, j)*(-3)^j), ", "))) \\ G. C. Greubel, Oct 15 2017
CROSSREFS
Cf. Pascal (1,m,1) array: A098593 (m = -2), A000012 (m = -1), A007318 (m = 0), A008288 (m = 1), A081577 (m = 2), A081578 (m = 3), A081579 (m = 4), A081580 (m = 5), A081581 (m = 6), A081582 (m = 7), A143683 (m = 8).
Sequence in context: A133332 A362895 A179680 * A046218 A046221 A220837
KEYWORD
sign,tabl,easy
AUTHOR
Philippe Deléham, Nov 12 2006
STATUS
approved