OFFSET
0,8
COMMENTS
Riordan array (1/(1-x), x*(1-3x)/(1-x)).
LINKS
G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
FORMULA
Sum_{k=0..n} T(n,k) = A088137(n+1).
T(n,k) = T(n-1,k-1) + T(n-1,k) - 3*T(n-2,k-1), n>0.
From Paul Barry, Jan 24 2011: (Start)
T(n,k) = Sum_{j=0..n} binomial(n-j,k)*binomial(k,j)*(-3)^j.
T(n,k) = [k<=n]*Hypergeometric2F1(-k,k-n,1,-2). (End)
E.g.f. for the n-th subdiagonal: exp(x)*P(n,x), where P(n,x) is the polynomial Sum_{k = 0..n} binomial(n,k)*(-2*x)^k/k!. For example, the e.g.f. for the second subdiagonal is exp(x)*(1 - 4*x + 4*x^2/2) = 1 - 3*x - 3*x^2/2! + x^3/3! + 9*x^4/4! + 21*x^5/5! + .... - Peter Bala, Mar 05 2017
EXAMPLE
Triangle begins:
1;
1, 1;
1, -1, 1;
1, -3, -3, 1;
1, -5, -3, -5, 1;
1, -7, 1, 1, -7, 1;
1, -9, 9, 11, 9, -9, 1;
1, -11, 21, 17, 17, 21, -11, 1;
1, -13, 37, 11, 1, 11, 37, -13, 1;
MATHEMATICA
T[n_, k_] := Sum[Binomial[n - j, k]*Binomial[k, j]*(-3)^j, {j, 0, n}]; Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, Oct 15 2017 *)
PROG
(PARI) for(n=0, 10, for(k=0, n, print1(sum(j=0, n, binomial(n-j, k)* binomial(k, j)*(-3)^j), ", "))) \\ G. C. Greubel, Oct 15 2017
CROSSREFS
KEYWORD
AUTHOR
Philippe Deléham, Nov 12 2006
STATUS
approved