login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143683
Pascal-(1,8,1) array.
10
1, 1, 1, 1, 10, 1, 1, 19, 19, 1, 1, 28, 118, 28, 1, 1, 37, 298, 298, 37, 1, 1, 46, 559, 1540, 559, 46, 1, 1, 55, 901, 4483, 4483, 901, 55, 1, 1, 64, 1324, 9856, 21286, 9856, 1324, 64, 1, 1, 73, 1828, 18388, 67006, 67006, 18388, 1828, 73, 1, 1, 82, 2413, 30808, 164242, 304300, 164242, 30808, 2413, 82, 1
OFFSET
0,5
LINKS
FORMULA
Square array: T(n, 0) = T(0, k) = 1, T(n, k) = T(n, k-1) + 8*T(n-1, k-1) + T(n-1, k).
Number triangle: T(n,k) = Sum_{j=0..n-k} binomial(n-k,j)*binomial(k,j)*9^j.
Rows are the expansions of (1+8*x)^k/(1-x)^(k+1).
Riordan array (1/(1-x), x*(1+8*x)/(1-x)).
T(n, k) = Hypergeometric2F1([-k, k-n], [1], 9). - Jean-François Alcover, May 24 2013
E.g.f. for the n-th subdiagonal, n = 0,1,2,..., equals exp(x)*P(n,x), where P(n,x) is the polynomial Sum_{k = 0..n} binomial(n,k)*(9*x)^k/k!. For example, the e.g.f. for the second subdiagonal is exp(x)*(1 + 18*x + 81*x^2/2) = 1 + 19*x + 118*x^2/2! + 298*x^3/3! + 559*x^4/4! + 901*x^5/5! + .... - Peter Bala, Mar 05 2017
Sum_{k=0..n} T(n,k) = A003683(n+1). - G. C. Greubel, May 27 2021
EXAMPLE
Square array begins as:
1, 1, 1, 1, 1, 1, 1, ... A000012;
1, 10, 19, 28, 37, 46, 55, ... A017173;
1, 19, 118, 298, 559, 901, 1324, ...
1, 28, 298, 1540, 4483, 9856, 18388, ...
1, 37, 559, 4483, 21286, 67006, 164242, ...
1, 46, 901, 9856, 67006, 304300, 1004590, ...
1, 55, 1324, 18388, 164242, 1004590, 4443580, ...
Antidiagonal triangle begins as:
1;
1, 1;
1, 10, 1;
1, 19, 19, 1;
1, 28, 118, 28, 1;
1, 37, 298, 298, 37, 1;
1, 46, 559, 1540, 559, 46, 1;
1, 55, 901, 4483, 4483, 901, 55, 1;
MATHEMATICA
Table[Hypergeometric2F1[-k, k-n, 1, 9], {n, 0, 12}, {k, 0, n}]//Flatten (* Jean-François Alcover, May 24 2013 *)
PROG
(Haskell)
a143683 n k = a143683_tabl !! n !! k
a143683_row n = a143683_tabl !! n
a143683_tabl = map fst $ iterate
(\(us, vs) -> (vs, zipWith (+) (map (* 8) ([0] ++ us ++ [0])) $
zipWith (+) ([0] ++ vs) (vs ++ [0]))) ([1], [1, 1])
-- Reinhard Zumkeller, Mar 16 2014
(Magma)
A143683:= func< n, k, q | (&+[Binomial(k, j)*Binomial(n-j, k)*q^j: j in [0..n-k]]) >;
[A143683(n, k, 8): k in [0..n], n in [0..12]]; // G. C. Greubel, May 27 2021
(Sage) flatten([[hypergeometric([-k, k-n], [1], 9).simplify() for k in (0..n)] for n in (0..12)]) # G. C. Greubel, May 27 2021
CROSSREFS
Cf.Pascal (1,m,1) array: A123562 (m = -3), A098593 (m = -2), A000012 (m = -1), A007318 (m = 0), A008288 (m = 1), A081577 (m = 2), A081578 (m = 3), A081579 (m = 4), A081580 (m = 5), A081581 (m = 6), A081582 (m = 7).
Sequence in context: A168644 A378544 A168620 * A146773 A202941 A166341
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Aug 28 2008
STATUS
approved