login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143680
a(n) = (prime(n)^3 - prime(n^3))/2.
4
3, 4, 11, 16, 320, 438, 1302, 1594, 3324, 8235, 9417, 17950, 24759, 27349, 36252, 55002, 78861, 84711, 115866, 138056, 146440, 190374, 220857, 277626, 370572, 417629, 435933, 488096, 507799, 565157, 850338, 930999, 1072092, 1107343
OFFSET
1,1
LINKS
EXAMPLE
If n=1, then (prime(1)^3-prime(1^3))/2 = (8-2)/2 = 6/2 = 3 = a(1).
If n=2, then (prime(2)^3-prime(2^3))/2 = (27-19)/2 = 8/2 = 4 = a(2).
If n=3, then (prime(3)^3-prime(3^3))/2 = (125-103)/2 = 22/2 = 11 = a(3).
If n=4, then (prime(4)^3-prime(4^3))/2 = (343-311)/2 = 32/2 = 16 = a(4).
If n=5, then (prime(5)^3-prime(5^3))/2 = (1331-691)/2 = 640/2 = 320 = a(5), etc.
MAPLE
A143680 := proc(n) option remember ; local p; (ithprime(n)^3-ithprime(n^3))/2 ; end: for n from 1 to 40 do printf("%d, ", A143680(n)) ; od: # R. J. Mathar, Nov 05 2008
MATHEMATICA
Table[(Prime[n]^3 - Prime[n^3]) / 2, {n, 50}] (* Vincenzo Librandi, Sep 15 2015 *)
PROG
(PARI) a(n) = (prime(n)^3 -prime(n^3))/2; \\ Michel Marcus, Sep 15 2015
(Magma) [(NthPrime(n)^3 -NthPrime(n^3))/2: n in [1..40]]; // Vincenzo Librandi, Sep 15 2015
(Sage) [(nth_prime(n)^3 - nth_prime(n^3))/2 for n in (1..40)] # G. C. Greubel, May 29 2021
CROSSREFS
Cf. A000040.
Cf. A030078, A055875. [R. J. Mathar, Nov 05 2008]
Sequence in context: A026676 A142870 A324552 * A058569 A231882 A026753
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from R. J. Mathar, Nov 05 2008
STATUS
approved