login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058569
McKay-Thompson series of class 22a for Monster.
1
1, 3, 4, 11, 17, 31, 45, 71, 102, 158, 218, 317, 440, 613, 832, 1147, 1530, 2054, 2710, 3580, 4673, 6094, 7858, 10140, 12958, 16549, 20976, 26565, 33401, 41954, 52404, 65365, 81119, 100534, 124048, 152820, 187578, 229848, 280708, 342262, 416056, 504943, 611202, 738590, 890379
OFFSET
-1,2
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Comm. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
Expansion of (B*(A)^2 + 4*q^3/(B*(A)^2))/(B)^2, where A = q^(1/2)*((eta(q^2)*eta(q^22))^2/(eta(q)*eta(q^4)*eta(q^11)*eta(q^44))) and B = q^(1/2)*(eta(q)*eta(q^11)/(eta(q^2)*eta(q^22))), in powers of q. - G. C. Greubel, Jun 21 2018
a(n) ~ exp(2*Pi*sqrt(2*n/11)) / (2^(3/4) * 11^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jun 28 2018
EXAMPLE
T22a = 1/q + 3*q + 4*q^3 + 11*q^5 + 17*q^7 + 31*q^9 + 45*q^11 + 71*q^13 + ...
MATHEMATICA
eta[q_]:= q^(1/24)*QPochhammer[q]; e44b := q^(1/2)*(eta[q]*eta[q^11]/(eta[q^2]*eta[q^22])); e88A := q^(1/2)*((eta[q^2]*eta[q^22])^2/(eta[q]*eta[q^4]*eta[q^11]*eta[q^44])); a:= CoefficientList[Series[ (e44b*(e88A)^2 + 4*q^3/(e44b*(e88A)^2))/(e44b)^2, {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 21 2018 *)
PROG
(PARI) q='q+O('q^50); A = ((eta(q^2)*eta(q^22))^2/(eta(q)*eta(q^4)* eta(q^11) *eta(q^44))); B = (eta(q)*eta(q^11)/(eta(q^2)*eta(q^22))); Vec((B*(A)^2 + 4*q^3/(B*(A)^2))/(B)^2) \\ G. C. Greubel, Jun 21 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 27 2000
EXTENSIONS
Terms a(12) onward added by G. C. Greubel, Jun 21 2018
STATUS
approved