login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058566
McKay-Thompson series of class 21D for Monster.
2
1, 0, 5, 8, 16, 26, 44, 66, 104, 152, 229, 324, 469, 652, 916, 1250, 1716, 2306, 3108, 4116, 5464, 7156, 9373, 12144, 15725, 20190, 25889, 32952, 41881, 52904, 66716, 83688, 104785, 130608, 162486, 201336, 249006, 306874, 377482, 462860, 566513, 691404
OFFSET
-1,3
LINKS
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
FORMULA
Expansion of -2 + (eta(q^3)*eta(q^7)/(eta(q)*eta(q^21)))^2 in powers of q. - G. C. Greubel, Jun 14 2018
a(n) ~ exp(4*Pi*sqrt(n/21)) / (sqrt(2) * 21^(1/4) * n^(3/4)). - Vaclav Kotesovec, Jun 28 2018
EXAMPLE
T21D = 1/q + 5*q + 8*q^2 + 16*q^3 + 26*q^4 + 44*q^5 + 66*q^6 + 104*q^7 + ...
MATHEMATICA
eta[q_]:= q^(1/24)*QPochhammer[q]; a:= CoefficientList[Series[q*(-2 + (eta[q^3]*eta[q^7]/(eta[q]*eta[q^21]))^2), {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 14 2018 *)
PROG
(PARI) q='q+O('q^50); A = -2+(eta(q^3)*eta(q^7)/(eta(q)*eta(q^21)))^2/q; Vec(A) \\ G. C. Greubel, Jun 14 2018
CROSSREFS
Cf. A226015 (same sequence except for n=0).
Sequence in context: A073136 A063924 A340997 * A153363 A154119 A196387
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 27 2000
EXTENSIONS
More terms from Michel Marcus, Feb 18 2014
STATUS
approved