|
|
A000521
|
|
Coefficients of modular function j as power series in q = e^(2 Pi i t). Another name is the elliptic modular invariant J(tau).
(Formerly M5477 N2372)
|
|
334
|
|
|
1, 744, 196884, 21493760, 864299970, 20245856256, 333202640600, 4252023300096, 44656994071935, 401490886656000, 3176440229784420, 22567393309593600, 146211911499519294, 874313719685775360, 4872010111798142520, 25497827389410525184, 126142916465781843075
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
-1,2
|
|
COMMENTS
|
"The most natural normalization [of the j function] is to set the constant term equal to 24, the number given by Rademacher's infinite series for coefficients of the j function". [Borcherds]
Changing the term 744 to 24 gives A007240, the McKay-Thompson series of class 1A for Monster simple group.
sigma_3(n) is the sum of the cubes of the divisors of n (A001158).
Klein's absolute invariant J=j/1728 is Gamma-modular.
The Mathematica implementation of KleinInvariantJ[] (versions 6 to 8) had bugs giving wrong value for a[7], a[9], a[11] and other values. - Michael Somos, Mar 07 2012
It is an open question if there are infinitely many k such that a(k) is prime. The known such indices are listed in A339429. See the paper by Fredrik Johansson. - Peter Luschny, May 05 2021
|
|
REFERENCES
|
J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 115.
H. Cohen, A Course in Computational Algebraic Number Theory, Springer, 1996, pp. 376ff.
A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, p. 20.
Evans, David E., and Yasuyuki Kawahigashi. "Subfactors and mathematical physics." Bulletin of the American Mathematical Society, 60:4, (2023), 459-482 (see page 472).
M. Kaneko, Fourier coefficients of the elliptic modular function j(tau) (in Japanese), Rokko Lectures in Mathematics 10, Dept. Math., Faculty of Science, Kobe University, Rokko, Kobe, Japan, 2001.
M. J. Knopp, Rademacher on J(tau), Poincare series of nonpositive weights and Eichler cohomology, Notices Amer. Math. Soc., 37:4 (1990), 385-393.
S. Lang, Introduction to Modular Forms, Springer-Verlag, 1976, p. 12.
B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, NY, 1974, p. 56.
J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Springer, see p. 482.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
|
|
LINKS
|
D. Alexander, C. Cummins, J. McKay, and C. Simons, Completely replicable functions, in Groups, Combinatorics & Geometry, (Durham, 1990), pp. 87--98, London Math. Soc. Monograph No. 165.
D. Alexander, C. Cummins, J. McKay and C. Simons, Completely replicable functions, LMS Lecture Notes, 165, ed. Liebeck and Saxl (1992), 87-98, annotated and scanned copy.
|
|
FORMULA
|
G.f.: A007245(q)^3/q; or (1 + 240 Sum_{k>0} sigma_3(k) q^k )^3 / (q Product_{k>0} (1-q^k)^24 ).
Expansion of 128 * (theta_2(q)^8 + theta_3(q)^8 + theta_4(q)^8) * (theta_2(q)^-8 + theta_3(q)^-8 + theta_4(q)^-8) in powers of q^2. - Michael Somos, Oct 02 2007
a(n) ~ exp(4*Pi*n^(1/2))/(2^(1/2)*n^(3/4)) [Petersson (1932), Rademacher (1938)]. - Gheorghe Coserea, Oct 09 2015
G.f.: 256*(1 - lambda + lambda^2)^3/(lambda^2 * (1 - lambda)^2) where lambda is the elliptic modular function (A115977). - Seiichi Manyama, Jul 30 2017
|
|
EXAMPLE
|
j = 1/q + 744 + 196884*q + 21493760*q^2 + 864299970*q^3 + 20245856256*q^4 + ...
If J_n := j(sqrt(-n))^(1/3), then J_1 = 12, J_2 = 20, J_4 = 66, J_77 = 255. - Michael Somos, Oct 31 2019
|
|
MAPLE
|
with(numtheory): TOP := 31;
g2 := (4/3) * (1 + 240 * add(sigma[ 3 ](n)*q^n, n=1..TOP-1));
g3 := (8/27) * (1 - 504 * add(sigma[ 5 ](n)*q^n, n=1..TOP-1));
delta := series(g2^3 - 27*g3^2, q, TOP);
j := series(1728 * g2^3 / delta, q, TOP);
|
|
MATHEMATICA
|
CoefficientList[Normal[Series[1728*KleinInvariantJ[z], {z, 0, 30}]*Exp[ -2*I*Pi/z]] /. E^(Pi*Complex[0, n_]/z) -> t^(-n/2), t] (* Artur Jasinski, Dec 20 2008, after Daniel Lichtblau, corrected by Vaclav Kotesovec, Jul 07 2020 *)
a[ n_] := With[ {tau = Log[q] / (2 Pi I)}, SeriesCoefficient[ Series[ 1728 KleinInvariantJ[ tau], {q, 0, n}], {q, 0, n}]]; (* Michael Somos, Nov 20 2011 *)(* Since V7 *)
a[ n_] := With[ {e1 = DedekindEta[ Log[q] / (2 Pi I)]^24, e2 = DedekindEta[ Log[q] / (Pi I)]^24}, SeriesCoefficient[ Series[ (e1 + 256 e2)^3 / (e1^2 e2), {q, 0, n + 1}], {q, 0, n}]]; (* Michael Somos, Mar 09 2012 *)
a[ n_] := With[ {L = ModularLambda[ Log[q] / (2 Pi I)]}, SeriesCoefficient[ Series[ 256 (L^2 - L + 1)^3 / (L (1 - L))^2, {q, 0, 2 n + 3}], {q, 0, n}]]; (* Michael Somos, Mar 09 2012 *)
a[ n_] := If[ n < -1, 0, With[ {E4 = 1 + 240 Sum[ DivisorSigma[ 3, k] q^k, {k, n + 2}], E6 = 1 - 504 Sum[ DivisorSigma[ 5, k] q^k, {k, n + 2}]}, SeriesCoefficient[ Series[ 1728 E4^3 / (E4^3 - E6^2), {q, 0, n}], {q, 0, n}]]]; (* Michael Somos, Mar 09 2012 *)
CoefficientList[Series[(65536 + x*QPochhammer[-1, x]^24)^3 / (16777216 * QPochhammer[-1, x]^24), {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 23 2017 *)
a[n_] := SeriesCoefficient[With[{L = InverseEllipticNomeQ[rootQ]}, 256 (L^2 - L + 1)^3/(L (1 - L))^2], {rootQ, 0, 2n}]; (* Jan Mangaldan, Jul 07 2020, after Michael Somos; corrected by Leo C. Stein, Feb 25 2024 *)
a[n_] := SeriesCoefficient[ 12^3 KleinInvariantJ[Log[q]/(2 Pi I)], {q, 0, n}] (* Leo C. Stein, Feb 25 2024 *)
|
|
PROG
|
(PARI) {a(n) = my(A); if( n<-1, 0, A = x^(2*n + 2) * O(x); A = x * (eta(x + A) * eta(x^4 + A)^2 / eta(x^2 + A)^3)^8; polcoeff( subst( 256 * (1 - x + x^2)^3 / (x - x^2)^2, x, 16*A), 2*n))}; /* Michael Somos, Apr 30 2004 */
(PARI) {a(n) = my(A); if( n<-1, 0, A = x^(5*n + 5) * O(x); A = (eta(x + A) / eta(x^5 + A))^6 / x; polcoeff( subst( (x^2 + 10*x + 5)^3 / x, x, A), 5*n))}; /* Michael Somos, Apr 30 2004 */
(PARI) {a(n) = my(A); if( n<-1, 0, A = x^2 * O(x^n); A = x * (eta(x^2 + A) / eta(x + A))^24; polcoeff( (1 + 256*A)^3 / A, n))}; /* Michael Somos, Jul 13 2004 */
(PARI) q='q+O('q^66); Vec(ellj(q)) \\ Joerg Arndt, Apr 24 2016
(PARI) {a(n) = if( n<-1, 0, polcoeff( ellj(x + x^3 * O(x^n)), n))}; /* Michael Somos, Dec 25 2016 */
|
|
CROSSREFS
|
|
|
KEYWORD
|
easy,nonn,nice,core
|
|
AUTHOR
|
|
|
EXTENSIONS
|
Expanded the definition to include additional search terms. - N. J. A. Sloane, Nov 30 2019
|
|
STATUS
|
approved
|
|
|
|