OFFSET
1,1
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..424
B. Brent, p-adic continuity for exponents in product decomposition of the j-invariant, Answer 3 by W. Zudilin
N. J. A. Sloane, Transforms
FORMULA
1 / (q j(q)) = Product_{k>0} (1 - x^k)^-a(k).
a(n) = 3*(A110163(n) - 8) = (1/n) * Sum_{d|n} A008683(n/d) * A288261(d). - Seiichi Manyama, Jun 18 2017
a(n) ~ (-1)^n * 3*exp(Pi*sqrt(3)*n) / n. - Vaclav Kotesovec, Mar 24 2018
EXAMPLE
PROG
(PARI) {a(n) = local(A, S); if( n<1, 0, A = 1 + x * O(x^n); S = x * ellj( x * A ); for( k = 1, n-1, S *= (A - x^k) ^ polcoeff( S, k)); - polcoeff( S, n))}
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Jul 08 2011
STATUS
approved