The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A192728 G.f. satisfies: A(x) = 1/(1 - x*A(x)/(1 - x^2*A(x)/(1 - x^3*A(x)/(1 - x^4*A(x)/(1 - ...))))), a recursive continued fraction. 11
 1, 1, 2, 6, 19, 64, 226, 822, 3061, 11615, 44746, 174552, 688122, 2737153, 10972066, 44279234, 179754362, 733554695, 3007551211, 12382623614, 51174497023, 212218265661, 882810782322, 3682922292680, 15404800893438, 64590512696020, 271425803359505 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Vaclav Kotesovec, Table of n, a(n) for n = 0..400 Eric Weisstein's World of Mathematics, Rogers-Ramanujan Continued Fraction. FORMULA G.f. satisfies: A(x) = P(x)/Q(x) where _ P(x) = Sum_{n>=0} x^(n*(n+1)) * (-A(x))^n / Product(k=1..n} (1-x^k), _ Q(x) = Sum_{n>=0} x^(n^2) * (-A(x))^n / Product(k=1..n} (1-x^k), due to Ramanujan's continued fraction identity. a(n) ~ c * d^n / n^(3/2), where d = 4.44776682810490219629673157389741... and c = 0.533241700941579126635423052024... - Vaclav Kotesovec, Apr 30 2017 EXAMPLE G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 19*x^4 + 64*x^5 + 226*x^6 +... which satisfies A(x) = P(x)/Q(x) where P(x) = 1 - x^2*A(x)/(1-x) + x^6*A(x)^2/((1-x)*(1-x^2)) - x^12*A(x)^3/((1-x)*(1-x^2)*(1-x^3)) + x^20*A(x)^4/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) -+... Q(x) = 1 - x*A(x)/(1-x) + x^4*A(x)^2/((1-x)*(1-x^2)) - x^9*A(x)^3/((1-x)*(1-x^2)*(1-x^3)) + x^16*A(x)^4/((1-x)*(1-x^2)*(1-x^3)*(1-x^4)) -+... Explicitly, the above series begin: P(x) = 1 - x^2 - 2*x^3 - 4*x^4 - 10*x^5 - 28*x^6 - 90*x^7 - 310*x^8 - 1114*x^9 - 4115*x^10 - 15522*x^11 - 59517*x^12 - 231284*x^13 +... Q(x) = 1 - x - 2*x^2 - 4*x^3 - 9*x^4 - 26*x^5 - 84*x^6 - 292*x^7 - 1054*x^8 - 3908*x^9 - 14774*x^10 - 56742*x^11 - 220778*x^12 - 868452*x^13 +... Also, the g.f. A = A(x) satisfies: A = 1 + x*A + x^2*A^2 + x^3*(A^3 + A^2) + x^4*(A^4 + 2*A^3) + x^5*(A^5 + 3*A^4 + A^3) + x^6*(A^6 + 4*A^5 + 3*A^4 + A^3) + x^7*(A^7 + 5*A^6 + 6*A^5 + 3*A^4) +... which is a series generated by the continued fraction expression. PROG (PARI) /* As a recursive continued fraction: */ {a(n)=local(A=1+x, CF); for(i=1, n, CF=1+x; for(k=0, n, CF=1/(1-x^(n-k+1)*A*CF+x*O(x^n))); A=CF); polcoeff(A, n)} (PARI) /* By Ramanujan's continued fraction identity: */ {a(n)=local(A=1+x, P, Q); for(i=1, n, P=sum(m=0, sqrtint(n), x^(m*(m+1))/prod(k=1, m, 1-x^k)*(-A+x*O(x^n))^m); Q=sum(m=0, sqrtint(n), x^(m^2)/prod(k=1, m, 1-x^k)*(-A+x*O(x^n))^m); A=P/Q); polcoeff(A, n)} CROSSREFS Cf. A005169, A192729, A192730. Sequence in context: A176950 A119370 A192738 * A181315 A181734 A216447 Adjacent sequences:  A192725 A192726 A192727 * A192729 A192730 A192731 KEYWORD nonn AUTHOR Paul D. Hanna, Jul 08 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 1 09:53 EDT 2020. Contains 334762 sequences. (Running on oeis4.)