login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A119370 G.f. satisfies: A(x) = 1 + x*A(x)^2 + x^2*(A(x)^2 - A(x)). 11
1, 1, 2, 6, 19, 64, 225, 816, 3031, 11473, 44096, 171631, 675130, 2679728, 10719237, 43168826, 174885089, 712222799, 2914150406, 11973792218, 49385167369, 204386777160, 848530495383, 3532844222611, 14747626307436, 61712139464939 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Equals base sequence of pendular trinomial triangle A119369; iterated convolutions of this sequence with the central terms (A119371) generates all diagonals of A119369. For example: A119372 = A119370 * A119371; A119373 = A119370^2 * A119371.

Diagonal sums of number array A133336. - Philippe Deléham, Nov 09 2009

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Stoyan Dimitrov, On permutation patterns with constrained gap sizes, arXiv:2002.12322 [math.CO], 2020.

FORMULA

G.f.: A(x) = ((1+x^2) - sqrt( (1+x^2)^2 - 4*x*(1+x) ))/(2*x*(1+x)). Equals the inverse binomial transform of A104547.

Recurrence: (n+1)*a(n) = 3*(n-1)*a(n-1) + 6*(n-1)*a(n-2) + 2*(n-2)*a(n-3) - (n-5)*a(n-4) - (n-5)*a(n-5). - Vaclav Kotesovec, Sep 11 2013

a(n) ~ sqrt(-z^2-3*z+1)*(4+2*z-z^3)^(n+1)*(-z^3+z^2+z+3) / (8*sqrt(Pi) * n^(3/2)), where z = 1/(2*sqrt(3/(4+(280-24*sqrt(129))^(1/3) + 2*(35 + 3*sqrt(129))^(1/3)))) - 1/2*sqrt(8/3-1/3*(280-24*sqrt(129))^(1/3) - 2/3*(35+3*sqrt(129))^(1/3) + 8*sqrt(3/(4+(280-24*sqrt(129))^(1/3) + 2*(35 + 3*sqrt(129))^(1/3)))) = 0.225270426... is the root of the equation 1-2*z^2+z^4-4*z=0. - Vaclav Kotesovec, Sep 11 2013

G.f.: 1/G(0) where G(k) = 1 - q/(1 - (q + q^2) / G(k+1) ). - Joerg Arndt, Dec 06 2014

EXAMPLE

A(x) = 1 + x + 2*x^2 + 6*x^3 + 19*x^4 + 64*x^5 + 225*x^6 + 816*x^7 +...

x*A(x)^2 = x + 2*x^2 + 5*x^3 + 16*x^4 + 54*x^5 + 190*x^6 + 690*x^7 +...

x^2*( A(x)^2 - A(x) ) = 1*x^3 + 3*x^4 + 10*x^5 + 35*x^6 + 126*x^7 +...

MATHEMATICA

CoefficientList[Series[((1+x^2)-Sqrt[(1+x^2)^2-4*x*(1+x)])/(2*x*(1+x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 11 2013 *)

PROG

(PARI) {a(n)=polcoeff(2/((1+x^2)+sqrt((1+x^2)^2-4*x*(1+x)+x*O(x^n))), n)}

CROSSREFS

Cf. A119369, A119371, A119372, A119373, A119374, A119375, A119376; A104547.

Sequence in context: A329802 A151283 A176950 * A192738 A192728 A181315

Adjacent sequences:  A119367 A119368 A119369 * A119371 A119372 A119373

KEYWORD

nonn

AUTHOR

Paul D. Hanna, May 16 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 29 07:44 EST 2020. Contains 338756 sequences. (Running on oeis4.)