login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A133336
Triangle T(n,k), 0 <= k <= n, read by rows, given by [1,1,1,1,1,1,1,...] DELTA [0,1,0,1,0,1,0,1,0,...] where DELTA is the operator defined in A084938.
7
1, 1, 0, 2, 1, 0, 5, 5, 1, 0, 14, 21, 9, 1, 0, 42, 84, 56, 14, 1, 0, 132, 330, 300, 120, 20, 1, 0, 429, 1287, 1485, 825, 225, 27, 1, 0, 1430, 5005, 7007, 5005, 1925, 385, 35, 1, 0, 4862, 19448, 32032, 28028, 14014, 4004, 616, 44, 1, 0, 16796, 75582, 143208, 148512, 91728, 34398, 7644, 936, 54, 1, 0
OFFSET
0,4
COMMENTS
Mirror image of triangle A086810; another version of A126216.
Equals A131198*A007318 as infinite lower triangular matrices. - Philippe Deléham, Oct 23 2007
Diagonal sums: A119370. - Philippe Deléham, Nov 09 2009
LINKS
W. Y. C. Chen, T. Mansour and S. H. F. Yan, Matchings avoiding partial patterns, The Electronic Journal of Combinatorics 13, 2006, #R112, Theorem 3.3.
FORMULA
Sum_{k=0..n} T(n,k)*x^k = A000108(n), A001003(n), A007564(n), A059231(n), A078009(n), A078018(n), A081178(n), A082147(n), A082181(n), A082148(n), A082173(n) for x = 0,1,2,3,4,5,6,7,8,9,10 respectively.
Sum_{k=0..n} T(n,k)*x^(n-k) = A000007(n), A001003(n), A107841(n), A131763(n), A131765(n), A131846(n), A131926(n), A131869(n), A131927(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8 respectively. - Philippe Deléham, Nov 05 2007
Sum_{k=0..n} T(n,k)*(-2)^k*5^(n-k) = A152601(n). - Philippe Deléham, Dec 10 2008
T(n,k) = binomial(n-1,k)*binomial(2n-k,n)/(n+1), k <= n. - Philippe Deléham, Nov 02 2009
EXAMPLE
Triangle begins:
1;
1, 0;
2, 1, 0;
5, 5, 1, 0;
14, 21, 9, 1, 0;
42, 84, 56, 14, 1, 0;
132, 330, 300, 120, 20, 1, 0;
429, 1287, 1485, 825, 225, 27, 1, 0;
MATHEMATICA
Table[Binomial[n-1, k]*Binomial[2*n-k, n]/(n+1), {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, feb 05 2018 *)
PROG
(PARI) for(n=0, 10, for(k=0, n, print1(binomial(n-1, k)*binomial(2*n-k, n)/(n+1), ", "))) \\ G. C. Greubel, Feb 05 2018
(Magma) [[Binomial(n-1, k)*Binomial(2*n-k, n)/(n+1): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Feb 05 2018
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Oct 19 2007
STATUS
approved