OFFSET
0,4
COMMENTS
Diagonal sums: A119370. - Philippe Deléham, Nov 09 2009
LINKS
G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
W. Y. C. Chen, T. Mansour and S. H. F. Yan, Matchings avoiding partial patterns, The Electronic Journal of Combinatorics 13, 2006, #R112, Theorem 3.3.
FORMULA
Sum_{k=0..n} T(n,k)*x^k = A000108(n), A001003(n), A007564(n), A059231(n), A078009(n), A078018(n), A081178(n), A082147(n), A082181(n), A082148(n), A082173(n) for x = 0,1,2,3,4,5,6,7,8,9,10 respectively.
Sum_{k=0..n} T(n,k)*x^(n-k) = A000007(n), A001003(n), A107841(n), A131763(n), A131765(n), A131846(n), A131926(n), A131869(n), A131927(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8 respectively. - Philippe Deléham, Nov 05 2007
Sum_{k=0..n} T(n,k)*(-2)^k*5^(n-k) = A152601(n). - Philippe Deléham, Dec 10 2008
T(n,k) = binomial(n-1,k)*binomial(2n-k,n)/(n+1), k <= n. - Philippe Deléham, Nov 02 2009
EXAMPLE
Triangle begins:
1;
1, 0;
2, 1, 0;
5, 5, 1, 0;
14, 21, 9, 1, 0;
42, 84, 56, 14, 1, 0;
132, 330, 300, 120, 20, 1, 0;
429, 1287, 1485, 825, 225, 27, 1, 0;
MATHEMATICA
Table[Binomial[n-1, k]*Binomial[2*n-k, n]/(n+1), {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, feb 05 2018 *)
PROG
(PARI) for(n=0, 10, for(k=0, n, print1(binomial(n-1, k)*binomial(2*n-k, n)/(n+1), ", "))) \\ G. C. Greubel, Feb 05 2018
(Magma) [[Binomial(n-1, k)*Binomial(2*n-k, n)/(n+1): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Feb 05 2018
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Oct 19 2007
STATUS
approved