login
A131926
Expansion of series reversion of x(1-7x)/(1-x).
6
1, 6, 78, 1266, 23010, 448062, 9140118, 192804954, 4171347258, 92051810934, 2063947865694, 46885775086338, 1076785174781394, 24959959877000238, 583201632981980454, 13721408509737851754, 324797812150741560618, 7729580015834558984934, 184829586432121709114478
OFFSET
1,2
COMMENTS
The Hankel transform of this sequence is 42^C(n+1,2) .
LINKS
FORMULA
a(n) = Sum_{k=0..n} A086810(n,k)*6^k.
From Vaclav Kotesovec, Aug 20 2013: (Start)
G.f.: (x-13-sqrt(x^2-26*x+1))/14.
Recurrence: n*a(n) = 13*(2*n-3)*a(n-1) - (n-3)*a(n-2).
a(n) ~ sqrt(13*sqrt(42)-84)*(13+2*sqrt(42))^n/(14*sqrt(Pi)*n^(3/2)). (End)
G.f.: x/(1 - 6*x/(1 - 7*x/(1 - 6*x/(1 - 7*x/(1 - 6*x/(1 - ...)))))), a continued fraction. - Ilya Gutkovskiy, Apr 20 2017
MATHEMATICA
Rest[CoefficientList[InverseSeries[Series[x*(1-7*x)/(1-x), {x, 0, 20}], x], x]] (* Vaclav Kotesovec, Aug 20 2013 *)
PROG
(PARI) Vec(serreverse(x*(1-7*x)/(1-x)+O(x^66))) /* Joerg Arndt, Feb 06 2013 */
CROSSREFS
Sequence in context: A208473 A358956 A268555 * A132866 A279444 A094419
KEYWORD
nonn
AUTHOR
Philippe Deléham, Oct 29 2007
EXTENSIONS
More terms from Philippe Deléham, Feb 06 2013
Offset corrected, Joerg Arndt, Feb 15 2013
STATUS
approved