login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A131198 Triangle T(n,k), 0 <= k <= n, read by rows, given by [1,0,1,0,1,0,1,0,...] DELTA [0,1,0,1,0,1,0,1,...] where DELTA is the operator defined in A084938. 7
1, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 6, 1, 0, 1, 10, 20, 10, 1, 0, 1, 15, 50, 50, 15, 1, 0, 1, 21, 105, 175, 105, 21, 1, 0, 1, 28, 196, 490, 490, 196, 28, 1, 0, 1, 36, 336, 1176, 1764, 1176, 336, 36, 1, 0, 1, 45, 540, 2520, 5292, 5292, 2520, 540, 45, 1, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,8
COMMENTS
Mirror image of triangle A090181, another version of triangle of Narayana (A001263).
Equals A133336*A130595 as infinite lower triangular matrices. - Philippe Deléham, Oct 23 2007
LINKS
Paul Barry, Continued fractions and transformations of integer sequences, JIS 12 (2009), Article 09.7.6.
Paul Barry, On a Generalization of the Narayana Triangle, J. Int. Seq. 14 (2011), Article 11.4.5.
Paul Barry, On a transformation of Riordan moment sequences, arXiv:1802.03443 [math.CO], 2018.
Paul Barry and A. Hennessy, A Note on Narayana Triangles and Related Polynomials, Riordan Arrays, and MIMO Capacity Calculations, J. Int. Seq. 14 (2011), Article 11.3.8.
Aoife Hennessy, A Study of Riordan Arrays with Applications to Continued Fractions, Orthogonal Polynomials and Lattice Paths, Ph. D. Thesis, Waterford Institute of Technology, Oct. 2011.
FORMULA
Sum_{k=0..n} T(n,k)*x^k = A000012(n), A000108(n), A001003(n), A007564(n), A059231(n), A078009(n), A078018(n), A081178(n), A082147(n), A082181(n), A082148(n), A082173(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 respectively.
Sum_{k=0..n} T(n,k)*x^(n-k) = A000007(n), A000108(n), A006318(n), A047891(n+1), A082298(n), A082301(n), A082302(n), A082305(n), A082366(n), A082367(n), for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 respectively. - Philippe Deléham, Oct 23 2007
Sum_{k=0..floor(n/2)} T(n-k,k) = A004148(n). - Philippe Deléham, Nov 06 2007
T(2*n,n) = A125558(n). - Philippe Deléham, Nov 16 2011
T(n, k) = [x^k] hypergeom([1 - n, -n], [2], x). - Peter Luschny, Apr 26 2022
EXAMPLE
Triangle begins:
1;
1, 0;
1, 1, 0;
1, 3, 1, 0;
1, 6, 6, 1, 0;
1, 10, 20, 10, 1, 0;
1, 15, 50, 50, 15, 1, 0;
1, 21, 105, 175, 105, 21, 1, 0;
1, 28, 196, 490, 490, 196, 28, 1, 0; ...
MAPLE
T := (n, k) -> `if`(n=0, 0^n, binomial(n, k)^2*(n-k)/(n*(k+1)));
seq(print(seq(T(n, k), k=0..n)), n=0..5); # Peter Luschny, Jun 08 2014
R := n -> simplify(hypergeom([1 - n, -n], [2], x)):
Trow := n -> seq(coeff(R(n, x), x, k), k = 0..n):
seq(print(Trow(n)), n = 0..9); # Peter Luschny, Apr 26 2022
MATHEMATICA
Table[If[n == 0, 1, (n-k)*Binomial[n, k]^2/(n*(k+1))], {n, 0, 10}, {k, 0, n}] //Flatten (* G. C. Greubel, Feb 06 2018 *)
PROG
(PARI) for(n=0, 10, for(k=0, n, print1(if(n==0, 1, (n-k)*binomial(n, k)^2/(n* (k+1))), ", "))) \\ G. C. Greubel, Feb 06 2018
(Magma) [[n le 0 select 1 else (n-k)*Binomial(n, k)^2/(n*(k+1)): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Feb 06 2018
CROSSREFS
Sequence in context: A059045 A348210 A122935 * A090181 A256551 A144417
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Oct 20 2007
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 9 15:36 EST 2023. Contains 367693 sequences. (Running on oeis4.)