|
|
A125558
|
|
Central column of triangle A090181.
|
|
5
|
|
|
1, 1, 6, 50, 490, 5292, 60984, 736164, 9202050, 118195220, 1551580888, 20734762776, 281248448936, 3863302870000, 53644719852000, 751920156592200, 10626401036545650, 151269944167296900, 2167317913508055000
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
[1,6,50,490,5292,...] is a column in triangle of Narayana numbers A001263.
Number of Dyck 2n-paths with exactly n peaks. - Peter Luschny, May 10 2014
|
|
LINKS
|
Harvey P. Dale, Table of n, a(n) for n = 0..800
|
|
FORMULA
|
a(0)=1, a(n) = Catalan(n)^2*(n+1)/2 = A000108(n)^2*(n+1)/2 for n>0.
a(n) = A090181(2*n, n).
G.f.: 1 + x*3F2( (1, 3/2, 3/2); (2, 3))(16 x) = 1 + (2F1( (1/2, 1/2); {2})(16*x) - 1)/2. - Olivier Gérard, Feb 16 2011
|
|
MAPLE
|
seq(ceil(1/2*(n+1)*((binomial(2*n, n)/(1+n))^2)), n=0..18); # Zerinvary Lajos, Jun 18 2007
|
|
MATHEMATICA
|
CoefficientList[
Series[1 + (HypergeometricPFQ[{1/2, 1/2}, {2}, 16 x] - 1)/(2), {x, 0,
20}], x]
Join[{1}, Table[CatalanNumber[n]^2 (n+1)/2, {n, 20}]] (* Harvey P. Dale, Oct 19 2011 *)
|
|
CROSSREFS
|
Equals A000888(n)/2 for n>0.
Cf. A090181.
Sequence in context: A039742 A243667 A303562 * A005416 A300989 A105617
Adjacent sequences: A125555 A125556 A125557 * A125559 A125560 A125561
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
Philippe Deléham, Jan 01 2007, Oct 11 2007
|
|
STATUS
|
approved
|
|
|
|