This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 4500 articles have referenced us, often saying "we would not have discovered this result without the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A005416 Vertex diagrams of order 2n. (Formerly M4259) 4
 1, 1, 6, 50, 518, 6354, 89782, 1435330, 25625910, 505785122, 10944711398, 257834384850, 6572585595622, 180334118225650, 5300553714899094, 166206234856979810, 5538980473666776854, 195527829569946627138, 7288988096561232432070 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 REFERENCES P. Cvitanovic, Asymptotic estimates and gauge invariance, Nuclear Phys. B 127 (1977), 176-188. R. J. Martin and M. J. Kearney, An exactly solvable self-convolutive recurrence, Aequat. Math., 80 (2010), 291-318. see p. 293. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n=0..100 D. J. Broadhurst, Four-loop Dyson-Schwinger-Johnson anatomy FORMULA Let s_n=(2*n)!/(2^n*n!) (A001147), S(x)=Sum_{n >= 0} s_n*x^n; sequence has g.f. A(x) satisfying 1-1/S(x)=x*A(x)*S(x). a(n) = (2*n - 1) * A000698(n). [Martin and Kearney] EXAMPLE 1 + x + 6*x^2 + 50*x^3 + 518*x^4 + 6354*x^5 + 89782*x^6 + 1435330*x^7 + ... MATHEMATICA m = 19; s[x_] = Sum[(2*n)!/(2^n*n!)*x^n, {n, 0, m}]; gf[x_] = (s[x] - 1)/(s[x]^2*x); Most[CoefficientList[Series[gf[x], {x, 0, m}], x]] (* Jean-François Alcover, Aug 31 2011, after g.f. *) PROG (PARI) {a(n) = local(A); if( n<0, 0, A = sum( k=0, n+1, (2*k)! / k! /2^k * x^k, x^2 * O(x^n)); polcoeff( (A - 1) / (x * A^2), n))} /* Michael Somos, Oct 11 2006 */ (PARI) {a(n) = local(A); if( n<1, n==0, A = vector(n); A[1] = 1; for( k=2, n, A[k] = (2 * k - 3) * A[k-1] + sum( j=1, k-1, A[j] * A[k-j])); (2*n - 1) * A[n])} /* Michael Somos, Jul 24 2011 */ CROSSREFS Cf. A000698, A049464. Sequence in context: A039742 A243667 A125558 * A105617 A094072 A058784 Adjacent sequences:  A005413 A005414 A005415 * A005417 A005418 A005419 KEYWORD nonn,nice,easy AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 27 12:32 EST 2015. Contains 264547 sequences.