The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A297926 Number of set partitions of [2n] in which the size of the first block is n. 5
 1, 1, 6, 50, 525, 6552, 93786, 1504932, 26640900, 514083570, 10713538550, 239342496120, 5697111804566, 143759365731100, 3829115870472600, 107260549881604200, 3149703964487098665, 96686987797052290440, 3094969650442399156350, 103079905957566679518300 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The blocks are ordered with increasing least elements. a(0) = 1 by convention. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..445 Wikipedia, Partition of a set FORMULA a(n) = binomial(2*n-1,n-1) * Bell(n). a(n) = A056857(2n,n) = A056860(2n,n). EXAMPLE a(1) = 1: 1|2. a(2) = 6: 12|34, 12|3|4, 13|24, 13|2|4, 14|23, 14|2|3. MAPLE b:= proc(n) option remember; `if`(n=0, 1,       add(b(n-j)*binomial(n-1, j-1), j=1..n))     end: a:= n-> binomial(2*n-1, n-1)*b(n): seq(a(n), n=0..25); MATHEMATICA b[n_] := b[n] = If[n == 0, 1, Sum[b[n-j]*Binomial[n-1, j-1], {j, 1, n}]]; a[n_] := Binomial[2*n-1, n-1] * b[n]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, May 20 2018, translated from Maple *) CROSSREFS Cf. A000110, A056857, A056860, A276961, A297924. Sequence in context: A005416 A300989 A105617 * A094072 A058784 A008380 Adjacent sequences:  A297923 A297924 A297925 * A297927 A297928 A297929 KEYWORD nonn AUTHOR Alois P. Heinz, Jan 08 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 20 11:11 EST 2020. Contains 331083 sequences. (Running on oeis4.)