login
A297926
Number of set partitions of [2n] in which the size of the first block is n.
5
1, 1, 6, 50, 525, 6552, 93786, 1504932, 26640900, 514083570, 10713538550, 239342496120, 5697111804566, 143759365731100, 3829115870472600, 107260549881604200, 3149703964487098665, 96686987797052290440, 3094969650442399156350, 103079905957566679518300
OFFSET
0,3
COMMENTS
The blocks are ordered with increasing least elements.
a(0) = 1 by convention.
LINKS
FORMULA
a(n) = binomial(2*n-1,n-1) * Bell(n).
a(n) = A056857(2n,n) = A056860(2n,n).
EXAMPLE
a(1) = 1: 1|2.
a(2) = 6: 12|34, 12|3|4, 13|24, 13|2|4, 14|23, 14|2|3.
MAPLE
b:= proc(n) option remember; `if`(n=0, 1,
add(b(n-j)*binomial(n-1, j-1), j=1..n))
end:
a:= n-> binomial(2*n-1, n-1)*b(n):
seq(a(n), n=0..25);
MATHEMATICA
b[n_] := b[n] = If[n == 0, 1, Sum[b[n-j]*Binomial[n-1, j-1], {j, 1, n}]];
a[n_] := Binomial[2*n-1, n-1] * b[n];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, May 20 2018, translated from Maple *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jan 08 2018
STATUS
approved