login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A297924
Number of set partitions of [2n] in which the size of the last block is n.
5
1, 1, 4, 20, 125, 952, 8494, 86025, 969862, 12020580, 162203607, 2363458396, 36930606254, 615302885459, 10878670826170, 203268056115256, 3999642836434361, 82617423216826640, 1786559190116778030, 40344863179696283037, 949348461372003462390
OFFSET
0,3
COMMENTS
The blocks are ordered with increasing least elements.
a(0) = 1 by convention.
LINKS
FORMULA
a(n) = A121207(2n,n) = A124496(2n,n).
EXAMPLE
a(1) = 1: 1|2.
a(2) = 4: 12|34, 13|24, 14|23, 1|2|34.
a(3) = 20: 123|456, 124|356, 125|346, 126|345, 12|3|456, 134|256, 135|246, 136|245, 13|2|456, 145|236, 146|235, 156|234, 1|23|456, 14|2|356, 1|24|356, 15|2|346, 1|25|346, 16|2|345, 1|26|345, 1|2|3|456.
MAPLE
b:= proc(n, k) option remember; `if`(n=k, 1,
add(b(n-j, k)*binomial(n-1, j-1), j=1..n-k))
end:
a:= n-> b(2*n, n):
seq(a(n), n=0..25);
MATHEMATICA
b[n_, k_] := b[n, k] = If[n == k, 1, Sum[b[n - j, k]*Binomial[n - 1, j - 1], {j, 1, n - k}]];
a[n_] := b[2*n, n];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, May 20 2018, translated from Maple *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jan 08 2018
STATUS
approved