The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A297924 Number of set partitions of [2n] in which the size of the last block is n. 5
 1, 1, 4, 20, 125, 952, 8494, 86025, 969862, 12020580, 162203607, 2363458396, 36930606254, 615302885459, 10878670826170, 203268056115256, 3999642836434361, 82617423216826640, 1786559190116778030, 40344863179696283037, 949348461372003462390 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The blocks are ordered with increasing least elements. a(0) = 1 by convention. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..466 Wikipedia, Partition of a set FORMULA a(n) = A121207(2n,n) = A124496(2n,n). EXAMPLE a(1) = 1: 1|2. a(2) = 4: 12|34, 13|24, 14|23, 1|2|34. a(3) = 20: 123|456, 124|356, 125|346, 126|345, 12|3|456, 134|256, 135|246, 136|245, 13|2|456, 145|236, 146|235, 156|234, 1|23|456, 14|2|356, 1|24|356, 15|2|346, 1|25|346, 16|2|345, 1|26|345, 1|2|3|456. MAPLE b:= proc(n, k) option remember; `if`(n=k, 1,       add(b(n-j, k)*binomial(n-1, j-1), j=1..n-k))     end: a:= n-> b(2*n, n): seq(a(n), n=0..25); MATHEMATICA b[n_, k_] := b[n, k] = If[n == k, 1, Sum[b[n - j, k]*Binomial[n - 1, j - 1], {j, 1, n - k}]]; a[n_] := b[2*n, n]; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, May 20 2018, translated from Maple *) CROSSREFS Cf. A121207, A124496, A276961, A297926. Sequence in context: A067121 A002793 A162509 * A151341 A285868 A266490 Adjacent sequences:  A297921 A297922 A297923 * A297925 A297926 A297927 KEYWORD nonn AUTHOR Alois P. Heinz, Jan 08 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 12 11:51 EDT 2021. Contains 343821 sequences. (Running on oeis4.)