login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A151341
Number of walks within N^2 (the first quadrant of Z^2) starting and ending at (0,0) and consisting of 2 n steps taken from {(-1, -1), (-1, 0), (-1, 1), (1, 0)}.
5
1, 1, 4, 20, 126, 882, 6732, 54483, 461890, 4059770, 36749648, 340841228, 3226474132, 31079221500, 303907314960, 3010947401340, 30176604541890, 305544118531410, 3122029001183400, 32162924697555960, 333798776316127980, 3487606641543204180, 36662847052669011720, 387575171486963664750
OFFSET
0,3
LINKS
M. Bousquet-Mélou and M. Mishna, Walks with small steps in the quarter plane, arXiv:0810.4387 [math.CO], 2008-2009.
FORMULA
a(n) = A000108(n)*A001006(n).
Conjecture: n*(n+2)*(n+1)*a(n) - 2*n*(2*n-1)*(2*n+1)*a(n-1) -12*(n-1)*(2*n-1)*(2*n-3)*a(n-2) = 0. - R. J. Mathar, Jul 21 2017
MAPLE
ogf := subs(t=sqrt(x), series( Int(Int(2*hypergeom([3/2, 3/2], [3], 16*t^2/(1+4*t^2))/(1+4*t^2)^(3/2), t), t)/t^2, t=0, 60)); # Mark van Hoeij, Aug 17 2014
MATHEMATICA
aux[i_Integer, j_Integer, n_Integer] := Which[Min[i, j, n] < 0 || Max[i, j] > n, 0, n == 0, KroneckerDelta[i, j, n], True, aux[i, j, n] = aux[-1 + i, j, -1 + n] + aux[1 + i, -1 + j, -1 + n] + aux[1 + i, j, -1 + n] + aux[1 + i, 1 + j, -1 + n]]; Table[aux[0, 0, 2 n], {n, 0, 25}]
Table[CatalanNumber[n]*(3/2)^(n+2)*Sum[CatalanNumber[k-1]*Binomial[k, n+2 -k]/3^k, {k, 1, n+2}], {n, 0, 25}] (* G. C. Greubel, Mar 11 2019 *)
PROG
(PARI) {a(n) = (3/2)^(n+2)*(binomial(2*n, n)/(n+1))*sum(k=1, n+2, binomial(k, n-k+2)*binomial(2*k-2, k-1)/(3^k*k))};
vector(25, n, n--; a(n)) \\ G. C. Greubel, Mar 11 2019
(Magma) [(3/2)^(n+2)*Catalan(n)*(&+[Binomial(k, n-k+2)*Catalan(k-1)/(3^k): k in [1..n+2]]): n in [0..25]]; // G. C. Greubel, Mar 11 2019
(Sage) [(3/2)^(n+2)*catalan_number(n)*sum(binomial(k, n-k+2)* catalan_number(k-1)/3^k for k in (1..n+2)) for n in (0..25)] # G. C. Greubel, Mar 11 2019
CROSSREFS
Sequence in context: A162509 A371524 A297924 * A349603 A285868 A361548
KEYWORD
nonn,walk
AUTHOR
Manuel Kauers, Nov 18 2008
STATUS
approved