login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A297923
T(n,k)=Number of nXk 0..1 arrays with every element equal to 1, 2, 3 or 4 king-move adjacent elements, with upper left element zero.
8
0, 1, 1, 1, 4, 1, 2, 17, 17, 2, 3, 61, 109, 61, 3, 5, 216, 588, 588, 216, 5, 8, 793, 3276, 4771, 3276, 793, 8, 13, 2907, 18451, 41762, 41762, 18451, 2907, 13, 21, 10622, 103558, 366976, 575754, 366976, 103558, 10622, 21, 34, 38809, 581318, 3211086, 7960069
OFFSET
1,5
COMMENTS
Table starts
..0.....1.......1.........2...........3.............5...............8
..1.....4......17........61.........216...........793............2907
..1....17.....109.......588........3276.........18451..........103558
..2....61.....588......4771.......41762........366976.........3211086
..3...216....3276.....41762......575754.......7960069.......109611795
..5...793...18451....366976.....7960069.....173216147......3751364813
..8..2907..103558...3211086...109611795....3751364813....127727388127
.13.10622..581318..28124318..1511726778...81401727872...4359449485941
.21.38809.3263838.246367034.20851649928.1766726336073.148831641978201
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 3*a(n-1) +a(n-2) +4*a(n-3) +4*a(n-4) for n>5
k=3: [order 9] for n>12
k=4: [order 31] for n>34
EXAMPLE
Some solutions for n=4 k=4
..0..1..1..1. .0..1..1..0. .0..0..0..0. .0..1..0..0. .0..0..1..0
..0..1..0..0. .0..1..0..1. .1..0..1..0. .0..0..1..0. .1..1..0..1
..1..0..1..0. .1..0..0..1. .1..0..1..0. .1..0..1..0. .0..1..0..1
..1..1..0..1. .0..1..1..1. .1..0..1..1. .1..0..0..0. .0..1..1..0
CROSSREFS
Column 1 is A000045(n-1).
Sequence in context: A298846 A298653 A299607 * A298547 A298337 A299398
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 08 2018
STATUS
approved