login
A299607
T(n,k)=Number of nXk 0..1 arrays with every element equal to 1, 2, 3, 6, 7 or 8 king-move adjacent elements, with upper left element zero.
5
0, 1, 1, 1, 4, 1, 2, 17, 17, 2, 3, 49, 48, 49, 3, 5, 166, 146, 146, 166, 5, 8, 573, 424, 466, 424, 573, 8, 13, 1933, 1274, 1446, 1446, 1274, 1933, 13, 21, 6538, 3820, 4648, 5125, 4648, 3820, 6538, 21, 34, 22165, 11529, 14888, 18273, 18273, 14888, 11529, 22165, 34
OFFSET
1,5
COMMENTS
Table starts
..0.....1.....1......2......3.......5........8........13.........21.........34
..1.....4....17.....49....166.....573.....1933......6538......22165......75089
..1....17....48....146....424....1274.....3820.....11529......34783.....104826
..2....49...146....466...1446....4648....14888.....47399.....150849.....480015
..3...166...424...1446...5125...18273....62547....215175.....740442....2539018
..5...573..1274...4648..18273...75970...292458...1146690....4552661...17798866
..8..1933..3820..14888..62547..292458..1284100...5779019...26461571..119048834
.13..6538.11529..47399.215175.1146690..5779019..30465069..164752420..870288036
.21.22165.34783.150849.740442.4552661.26461571.164752420.1069988410.6740006098
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2)
k=2: a(n) = 3*a(n-1) +a(n-2) +2*a(n-3) -2*a(n-4) -4*a(n-5) for n>6
k=3: [order 11] for n>13
k=4: [order 24] for n>27
EXAMPLE
Some solutions for n=6 k=6
..0..1..0..1..1..0. .0..0..1..1..0..1. .0..1..1..0..0..0. .0..0..1..0..1..0
..1..0..1..1..0..1. .1..1..0..1..1..0. .1..0..1..1..1..0. .1..1..0..0..0..1
..1..1..1..1..1..0. .0..0..1..1..1..1. .1..1..1..1..1..0. .0..0..0..0..0..0
..0..1..1..1..1..1. .1..1..1..1..1..0. .1..0..1..1..1..1. .0..0..0..0..0..1
..0..1..1..1..1..0. .1..1..1..1..1..0. .0..1..0..1..1..0. .1..1..0..0..1..0
..0..0..0..1..0..1. .0..0..1..0..0..0. .1..0..0..1..1..0. .0..0..1..0..0..1
CROSSREFS
Column 1 is A000045(n-1).
Column 2 is A297817.
Column 3 is A297988.
Column 4 is A297989.
Sequence in context: A297993 A298846 A298653 * A297923 A298547 A298337
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 14 2018
STATUS
approved