login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A056860 Triangle T(n,k) = number of element-subset partitions of {1..n} with n-k+1 equalities (n >= 1, 1 <= k <= n). 7
1, 1, 1, 1, 2, 2, 1, 3, 6, 5, 1, 4, 12, 20, 15, 1, 5, 20, 50, 75, 52, 1, 6, 30, 100, 225, 312, 203, 1, 7, 42, 175, 525, 1092, 1421, 877, 1, 8, 56, 280, 1050, 2912, 5684, 7016, 4140, 1, 9, 72, 420, 1890, 6552, 17052, 31572, 37260, 21147 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,5

COMMENTS

T(n,k) = number of permutations on [n] with n in position k in which 321 patterns only occur as part of 3241 patterns. Example: T(4,2)=3 counts 1423, 2413, 3412. - David Callan, Jul 20 2005

From Gary W. Adamson, Feb 24 2011: (Start)

Given rows of an array such that n-th row is the eigensequence of an infinite lower triangular matrix with first n columns of Pascal's triangle and the rest zeros. The reoriented finite differences of the array starting from the top are the rows of A056860.

The first few rows of the array are

  1,   1,   1,   1,   1,   1, ...

  1,   2,   3,   4,   5,   6, ...

  1,   2,   5,  10,  17,  26, ...

  1,   2,   5,  15,  37,  76, ...

  1,   2,   5,  15,  52, 151, ...

  ...

(End)

REFERENCES

W. C. Yang, Conjectures on some sequences involving set partitions and Bell numbers, preprint, 2000.

LINKS

Table of n, a(n) for n=1..55.

David Callan, A Combinatorial Interpretation of the Eigensequence for Composition, Journal of Integer Sequences, Vol. 9 (2006), Article 06.1.4.

FORMULA

T(n, k) = binomial(n-1, k-1)*B(k-1) where B denotes the Bell numbers A000110. - David Callan, Jul 20 2005

EXAMPLE

T(n,k) starts:

  1;

  1, 1;

  1, 2,  2;

  1, 3,  6,   5;

  1, 4, 12,  20,   15;

  1, 5, 20,  50,   75,   52;

  1, 6, 30, 100,  225,  312,   203;

  1, 7, 42, 175,  525, 1092,  1421,   877;

  1, 8, 56, 280, 1050, 2912,  5684,  7016,  4140;

  1, 9, 72, 420, 1890, 6552, 17052, 31572, 37260, 21147;

Building row sums Sum_{c=1..k} T(n,c), the following array results:

  1, 1,  1,   1,    1,    1,    1,     1,     1,     1, ...

  1, 2,  2,   2,    2,    2,    2,     2,     2,     2, ...

  1, 3,  5,   5,    5,    5,    5,     5,     5,     5, ...

  1, 4, 10,  15,   15,   15,   15,    15,    15,    15, ...

  1, 5, 17,  37,   52,   52,   52,    52,    52,    52, ...

  1, 6, 26,  76,  151,  203,  203,   203,   203,   203, ...

  1, 7, 37, 137,  362,  674,  877,   877,   877,   877, ...

  1, 8, 50, 225,  750, 1842, 3263,  4140,  4140,  4140, ...

  1, 9, 65, 345, 1395, 4307, 9991, 17007, 21147, 21147, ...

CROSSREFS

Essentially same as A056857, where rows are read from left to right.

T(2n+1,n+1) gives A124102.

T(2n,n) gives A297926.

Sequence in context: A065173 A098474 A153199 * A158825 A247507 A107111

Adjacent sequences:  A056857 A056858 A056859 * A056861 A056862 A056863

KEYWORD

nonn,tabl,easy

AUTHOR

N. J. A. Sloane, Oct 13 2000

EXTENSIONS

More terms from David Callan, Jul 20 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 10 18:10 EST 2019. Contains 329901 sequences. (Running on oeis4.)