login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A107111
Number array whose rows are the series reversions of x(1-x)/(1+x)^k, read by antidiagonals.
9
1, 1, 1, 1, 2, 2, 1, 3, 6, 5, 1, 4, 13, 22, 14, 1, 5, 23, 67, 90, 42, 1, 6, 36, 156, 381, 394, 132, 1, 7, 52, 305, 1162, 2307, 1806, 429, 1, 8, 71, 530, 2833, 9192, 14589, 8558, 1430, 1, 9, 93, 847, 5919, 27916, 75819, 95235, 41586, 4862, 1, 10, 118, 1272, 11070, 70098, 286632, 644908, 636925, 206098, 16796
OFFSET
0,5
COMMENTS
First row is the Catalan numbers A000108, second row is the large Schroeder numbers A006318, third row is A062992, fourth row is A007297. As a number triangle, this is T(n,k)=if(k<=n,sum{j=0..k, binomial((n-k)(k+1),k-j)*binomial(k+j,j)}/(k+1),0) with row sums A107112 and diagonal sums A107113.
FORMULA
T(n, k)=sum{j=0..k, binomial(n(k+1), k-j)*binomial(k+j, j)}/(k+1)
EXAMPLE
Array begins
1,1,2,5,14,42,132,...
1,2,6,22,90,394,1806,...
1,3,13,67,381,2307,14589,...
1,4,23,156,1162,9192,75819,...
MAPLE
A107111 := proc(n, k)
add(binomial(n*(k+1), k-j)*binomial(k+j, j), j=0..k);
%/(k+1) ;
end proc: # R. J. Mathar, Aug 02 2016
MATHEMATICA
T[n_, k_] := Sum[Binomial[n (k + 1), k - j] Binomial[k + j, j], {j, 0, k}]/(k + 1);
Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Feb 21 2020 *)
CROSSREFS
Cf. A366012.
Sequence in context: A056860 A158825 A247507 * A082037 A163649 A110858
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, May 12 2005
STATUS
approved