login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007297
Number of connected graphs on n labeled nodes on a circle with straight-line edges that don't cross.
(Formerly M3594)
49
1, 1, 4, 23, 156, 1162, 9192, 75819, 644908, 5616182, 49826712, 448771622, 4092553752, 37714212564, 350658882768, 3285490743987, 30989950019532, 294031964658430, 2804331954047160, 26870823304476690, 258548658860327880
OFFSET
1,3
COMMENTS
Apart from the initial 1, reversion of g.f. for A162395 (squares with signs): see A263843.
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 1..999 (first 101 terms from T. D. Noe)
M. Aguiar and J.-L. Loday, Quadri-algebras, J. Pure Appl. Algebra, 191 (2004), 205-221.
R. Bacher, On generating series of complementary plane trees arXiv:math/0409050 [math.CO], 2004.
P. Barry and A. Hennessy, Four-term Recurrences, Orthogonal Polynomials and Riordan Arrays, Journal of Integer Sequences, 2012, article 12.4.2. - From N. J. A. Sloane, Sep 21 2012
F. R. Bernhart & N. J. A. Sloane, Emails, April-May 1994
F. Cazals, Combinatorics of Non-Crossing Configurations, Studies in Automatic Combinatorics, Volume II (1997).
E. Deutsch and B. E. Sagan, Congruences for Catalan and Motzkin numbers and related sequences, arXiv:math/0407326 [math.CO], 2004; J. Num. Theory 117 (2006), 191-215.
C. Domb and A. J. Barrett, Enumeration of ladder graphs, Discrete Math. 9 (1974), 341-358 (column sums in Table 2).
Michael Drmota, Anna de Mier, Marc Noy, Extremal statistics on non-crossing configurations, Discrete Math. 327 (2014), 103--117. MR3192420. See Eq. (3). - N. J. A. Sloane, May 18 2014
Guillermo Esteban, Clemens Huemer, Rodrigo I. Silveira, New production matrices for geometric graphs, arXiv:2003.00524 [math.CO], 2020.
Sen-Peng Eu, Shu-Chung Liu and Yeong-Nan Yeh, On the congruences of some combinatorial numbers, Stud. Appl. Math. vol. 116 (2006) pp. 135-144.
P. Flajolet and M. Noy, Analytic combinatorics of non-crossing configurations, Discrete Math., 204, 203-229, 1999.
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 486.
Loïc Foissy, Free quadri-algebras and dual quadri-algebras, arXiv:1504.06056 [math.CO], 2015.
I. M. Gessel, A short proof of the Deutsch-Sagan congruence for connected non crossing graphs, arXiv preprint arXiv:1403.7656 [math.CO], 2014.
Marco Kuhlmann, Tabulation of Noncrossing Acyclic Digraphs, arXiv:1504.04993 [cs.DS], 2015.
M. Kuhlmann, P. Jonsson, Parsing to Noncrossing Dependency Graphs, Transactions of the Association for Computational Linguistics, vol. 3, pp. 559-570, 2015.
B. Vallette, Manin products, Koszul duality, Loday algebras and Deligne conjecture, arXiv:math/0609002 [math.QA], 2006-2007; J. Reine Angew. Math. 620 (2008), 105-164.
Anssi Yli-Jyrä and Carlos Gómez-Rodríguez, Generic Axiomatization of Families of Noncrossing Graphs in Dependency Parsing, arXiv:1706.03357 [cs.CL], 2017.
FORMULA
Apart from initial term, g.f. is the series reversion of (x-x^2)/(1+x)^3 (A162395). See A263843. - Vladimir Kruchinin, Feb 08 2013
G.f.: (g-z)/z, where g=-1/3+(2/3)*sqrt(1+9z)*sin((1/3)*arcsin((2+27z+54z^2)/2/(1+9*z)^(3/2))). - Emeric Deutsch, Dec 02 2002
a(n) = (1/n)*Sum_{k=0..n} binomial(3n, n-k-1)*binomial(n+k-1, k). - Paul Barry, May 11 2005
a(n) = 4^(n-1)*(Gamma(3*n/2-1)/Gamma(n/2+1)/Gamma(n) -Gamma((3*n-1)/2)/ Gamma( (n+1)/2)/Gamma(n+1)). - Mark van Hoeij, Aug 27 2005, adapted to offset Feb 21 2020 by R. J. Mathar
a(n) = 4^n * binomial(3*n/2, n/2) / (9*n-6) - 4^(n-1) * binomial(3*(n-1)/2, (n-1)/2 ) / n. - Mark van Hoeij, Aug 27 2005, adapted to offset Feb 21 2020 by R. J. Mathar
D-finite with recurrence: n*(n-1)*(3*n-4)*a(n) +36*(n-1)*a(n-1) -12*(3*n-8)*(3*n-1)*(3*n-7)*a(n-2)=0. - Mark van Hoeij, Aug 27 2005, adapted to offset Feb 21 2020 by R. J. Mathar
a(n) = (1/n)*Sum_{k=0..n} C(3n, k)*C(2n-k-2, n-1). - Paul Barry, Sep 27 2005
a(n) ~ (2-sqrt(3)) * 6^n * 3^(n/2) / (sqrt(2*Pi) * n^(3/2)). - Vaclav Kotesovec, Mar 17 2014
a(n) = binomial(3*n,2*n+1)*hypergeom([1-n,n], [2*n+2], -1)/n. - Vladimir Reshetnikov, Oct 25 2015
a(n) = 2*A078531(n) - A085614(n+1). - Vladimir Reshetnikov, Apr 24 2016
EXAMPLE
G.f. = x*(1 + x + 4*x^2 + 23*x^3 + 156*x^4 + 1162*x^5 + 9192*x^6 + 75819*x^7 + ...).
MAPLE
A007297:=proc(n) if n = 1 then 1 else add(binomial(3*n - 3, n + j)*binomial(j - 1, j - n + 1), j = n - 1 .. 2*n - 3)/(n - 1); fi; end;
MATHEMATICA
CoefficientList[ InverseSeries[ Series[(x-x^2)/(1+x)^3, {x, 0, 20}], x], x] // Rest (* From Jean-François Alcover, May 19 2011, after PARI prog. *)
Table[Binomial[3n, 2n+1] Hypergeometric2F1[1-n, n, 2n+2, -1]/n, {n, 1, 20}] (* Vladimir Reshetnikov, Oct 25 2015 *)
PROG
(PARI) a(n)=if(n<0, 0, polcoeff(serreverse((x-x^2)/(1+x)^3+O(x^(n+2))), n+1)) /* Ralf Stephan */
CROSSREFS
Cf. A162395, A000290. 4th row of A107111. Row sums of A089434.
See A263843 for a variant.
Cf. A000108 (non-crossing set partitions), A001006, A001187, A054726 (non-crossing graphs), A054921, A099947, A194560, A293510, A323818, A324167, A324169, A324173.
Sequence in context: A271469 A366070 A374564 * A263843 A326350 A198916
KEYWORD
nonn,easy,nice
EXTENSIONS
Better description from Philippe Flajolet, Apr 20 2000
More terms from James A. Sellers, Aug 21 2000
Definition revised and initial a(1)=1 added by N. J. A. Sloane, Nov 05 2015 at the suggestion of _Axel Boldt_. Some of the formulas may now need to be adjusted slightly.
STATUS
approved