login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293510
Number of connected minimal covers of n vertices.
20
1, 1, 1, 4, 23, 241, 3732, 83987, 2666729, 117807298, 7217946453, 612089089261, 71991021616582, 11761139981560581, 2675674695560997301, 849270038176762472316, 376910699272413914514283, 234289022942841270608166061, 204344856617470777364053906796
OFFSET
0,4
COMMENTS
A cover of a finite set S is a finite set of finite nonempty sets with union S. A cover is minimal if removing any edge results in a cover of strictly fewer vertices. A cover is connected if it is connected as a hypergraph or clutter. Note that minimality is with respect to covering rather than to connectedness (cf. A030019).
EXAMPLE
The a(3) = 4 covers are: ((12)(13)), ((12)(23)), ((13)(23)), ((123)).
MATHEMATICA
nn=30; ser=Sum[(1+Sum[Binomial[n, i]*StirlingS2[i, k]*(2^k-k-1)^(n-i), {k, 2, n}, {i, k, n}])*x^n/n!, {n, 0, nn}];
Table[n!*SeriesCoefficient[1+Log[ser], {x, 0, n}], {n, 0, nn}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Oct 11 2017
STATUS
approved