login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326501
a(n) = Sum_{k=0..n} (-k)^k.
2
1, 0, 4, -23, 233, -2892, 43764, -779779, 15997437, -371423052, 9628576948, -275683093663, 8640417354593, -294234689237660, 10817772136320356, -427076118244539019, 18019667955465012597, -809220593930871751580, 38537187481365665823844
OFFSET
0,3
LINKS
FORMULA
a(n) = 1 + (-1)^n * A001099(n).
MAPLE
a:= proc(n) option remember; `if`(n<0, 0, (-n)^n+a(n-1)) end:
seq(a(n), n=0..23); # Alois P. Heinz, Sep 12 2019
MATHEMATICA
RecurrenceTable[{a[0] == 1, a[n] == a[n-1] + (-n)^n}, a, {n, 0, 23}] (* Jean-François Alcover, Nov 27 2020 *)
PROG
(PARI) {a(n) = sum(k=0, n, (-k)^k)}
(Python)
from itertools import accumulate, count, islice
def A326501_gen(): # generator of terms
yield from accumulate((-k)**k for k in count(0))
A326501_list = list(islice(A326501_gen(), 10)) # Chai Wah Wu, Jun 18 2022
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Seiichi Manyama, Sep 12 2019
STATUS
approved