login
A326501
a(n) = Sum_{k=0..n} (-k)^k.
2
1, 0, 4, -23, 233, -2892, 43764, -779779, 15997437, -371423052, 9628576948, -275683093663, 8640417354593, -294234689237660, 10817772136320356, -427076118244539019, 18019667955465012597, -809220593930871751580, 38537187481365665823844
OFFSET
0,3
LINKS
FORMULA
a(n) = 1 + (-1)^n * A001099(n).
MAPLE
a:= proc(n) option remember; `if`(n<0, 0, (-n)^n+a(n-1)) end:
seq(a(n), n=0..23); # Alois P. Heinz, Sep 12 2019
MATHEMATICA
RecurrenceTable[{a[0] == 1, a[n] == a[n-1] + (-n)^n}, a, {n, 0, 23}] (* Jean-François Alcover, Nov 27 2020 *)
PROG
(PARI) {a(n) = sum(k=0, n, (-k)^k)}
(Python)
from itertools import accumulate, count, islice
def A326501_gen(): # generator of terms
yield from accumulate((-k)**k for k in count(0))
A326501_list = list(islice(A326501_gen(), 10)) # Chai Wah Wu, Jun 18 2022
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Seiichi Manyama, Sep 12 2019
STATUS
approved