Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Jun 18 2022 12:13:25
%S 1,0,4,-23,233,-2892,43764,-779779,15997437,-371423052,9628576948,
%T -275683093663,8640417354593,-294234689237660,10817772136320356,
%U -427076118244539019,18019667955465012597,-809220593930871751580,38537187481365665823844
%N a(n) = Sum_{k=0..n} (-k)^k.
%H Seiichi Manyama, <a href="/A326501/b326501.txt">Table of n, a(n) for n = 0..386</a>
%F a(n) = 1 + (-1)^n * A001099(n).
%p a:= proc(n) option remember; `if`(n<0, 0, (-n)^n+a(n-1)) end:
%p seq(a(n), n=0..23); # _Alois P. Heinz_, Sep 12 2019
%t RecurrenceTable[{a[0] == 1, a[n] == a[n-1] + (-n)^n}, a, {n, 0, 23}] (* _Jean-François Alcover_, Nov 27 2020 *)
%o (PARI) {a(n) = sum(k=0, n, (-k)^k)}
%o (Python)
%o from itertools import accumulate, count, islice
%o def A326501_gen(): # generator of terms
%o yield from accumulate((-k)**k for k in count(0))
%o A326501_list = list(islice(A326501_gen(),10)) # _Chai Wah Wu_, Jun 18 2022
%Y Cf. A001099, A062970, A177885.
%K sign,easy
%O 0,3
%A _Seiichi Manyama_, Sep 12 2019