The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A326498 Number of maximal subsets of {1..n} containing no sums of distinct elements. 6
 1, 1, 1, 3, 3, 6, 11, 16, 20, 32, 53, 78, 107, 149, 206, 292, 391, 556, 782, 1062, 1451, 1929, 2564, 3404, 4431, 5853, 7672, 9999, 12973, 16922, 22194, 28655, 36734, 47036, 60375, 76866, 97892, 123627, 157008, 196633, 248221 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS Andrew Howroyd, PARI Program EXAMPLE The a(1) = 1 through a(7) = 16 subsets:   {1}  {1,2}  {1,2}  {1,3}    {1,2,4}  {1,2,4}    {1,2,4}               {1,3}  {1,2,4}  {1,2,5}  {1,2,5}    {1,2,5}               {2,3}  {2,3,4}  {1,3,5}  {1,2,6}    {1,2,6}                               {2,3,4}  {1,3,5}    {1,2,7}                               {2,4,5}  {1,3,6}    {1,3,6}                               {3,4,5}  {1,4,6}    {1,4,6}                                        {2,3,4}    {1,4,7}                                        {2,3,6}    {2,3,4}                                        {2,4,5}    {2,4,5}                                        {2,5,6}    {2,4,7}                                        {3,4,5,6}  {2,5,6}                                                   {1,3,5,7}                                                   {2,3,6,7}                                                   {3,4,5,6}                                                   {3,5,6,7}                                                   {4,5,6,7} MATHEMATICA fasmax[y_]:=Complement[y, Union@@(Most[Subsets[#]]&/@y)]; Table[Length[fasmax[Select[Subsets[Range[n]], Intersection[#, Plus@@@Subsets[#, {2, n}]]=={}&]]], {n, 0, 10}] PROG (PARI) \\ See link for program file. for(n=0, 25, print1(A326498(n), ", ")) \\ Andrew Howroyd, Aug 29 2019 CROSSREFS Subsets without sums of distinct elements are A151897. Maximal sum-free subsets are A121269. Subsets with sums are A326083. Maximal subsets without products of distinct elements are A325710. Maximal subsets without sums or products of distinct elements are A326025. Cf. A007865, A103580, A326117, A326495, A326497. Sequence in context: A169944 A110952 A025250 * A094305 A057963 A250301 Adjacent sequences:  A326495 A326496 A326497 * A326499 A326500 A326501 KEYWORD nonn,more AUTHOR Gus Wiseman, Jul 09 2019 EXTENSIONS a(16)-a(40) from Andrew Howroyd, Aug 29 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 23 15:59 EDT 2020. Contains 337310 sequences. (Running on oeis4.)