The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A326496 Number of maximal product-free subsets of {1..n}. 9
 1, 1, 1, 1, 2, 2, 3, 3, 3, 4, 6, 6, 9, 9, 15, 17, 30, 30, 46, 46, 51, 61, 103, 103, 129, 158, 282, 282, 322, 322, 553, 553, 615, 689, 1247, 1365, 1870, 1870, 3566, 3758, 5244, 5244, 8677, 8677, 9807, 12147, 23351, 23351, 27469, 31694, 45718, 47186, 54594, 54594, 95382, 108198 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS A set is product-free if it contains no product of two (not necessarily distinct) elements. Also the number of maximal quotient-free subsets of {1..n}. LINKS Andrew Howroyd, PARI Program EXAMPLE The a(2) = 1 through a(10) = 6 subsets (A = 10):   {2}  {23}  {23}  {235}  {235}   {2357}   {23578}   {23578}   {23578}              {34}  {345}  {256}   {2567}   {25678}   {256789}  {2378A}                           {3456}  {34567}  {345678}  {345678}  {256789}                                                      {456789}  {26789A}                                                                {345678A}                                                                {456789A} MATHEMATICA fasmax[y_]:=Complement[y, Union@@(Most[Subsets[#]]&/@y)]; Table[Length[fasmax[Select[Subsets[Range[n]], Intersection[#, Times@@@Tuples[#, 2]]=={}&]]], {n, 0, 10}] PROG (PARI) \\ See link for program file. for(n=0, 30, print1(A326496(n), ", ")) \\ Andrew Howroyd, Aug 30 2019 CROSSREFS Product-free subsets are A326489. Subsets without products of distinct elements are A326117. Maximal sum-free subsets are A121269. Maximal sum-free and product-free subsets are A326497. Maximal subsets without products of distinct elements are A325710. Cf. A007865, A051026, A326076, A326491, A326492, A326495, A327591. Sequence in context: A036846 A227396 A331590 * A058740 A160642 A110868 Adjacent sequences:  A326493 A326494 A326495 * A326497 A326498 A326499 KEYWORD nonn AUTHOR Gus Wiseman, Jul 09 2019 EXTENSIONS Terms a(18) and beyond from Andrew Howroyd, Aug 30 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 9 22:52 EDT 2020. Contains 336335 sequences. (Running on oeis4.)