login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326493
Sum of multinomials M(n-k; p_1-1, ..., p_k-1), where p = (p_1, ..., p_k) ranges over all partitions of n into distinct parts (k is a partition length).
7
1, 1, 1, 2, 2, 5, 9, 21, 38, 146, 322, 902, 3106, 8406, 35865, 123321, 393691, 1442688, 7310744, 23471306, 129918661, 500183094, 2400722981, 9592382321, 47764284769, 280267554944, 1247781159201, 7620923955225, 36278364107926, 189688942325418, 1124492015730891
OFFSET
0,4
COMMENTS
Number of partitions of [n] such that each block contains its size as an element. So the block sizes have to be distinct. a(6) = 9: 123456, 12|3456, 1345|26, 1346|25, 1456|23, 1|23456, 1|24|356, 1|25|346, 1|26|345.
MAPLE
with(combinat):
a:= n-> add(multinomial(n-nops(p), map(x-> x-1, p)[], 0),
p=select(l-> nops(l)=nops({l[]}), partition(n))):
seq(a(n), n=0..30);
# second Maple program:
b:= proc(n, i, p) option remember; `if`(i*(i+1)/2<n, 0, `if`(n=0, p!,
b(n, i-1, p)+b(n-i, min(n-i, i-1), p-1)/(i-1)!))
end:
a:= n-> b(n$3):
seq(a(n), n=0..31);
MATHEMATICA
b[n_, i_, p_] := b[n, i, p] = If[i(i+1)/2 < n, 0, If[n==0, p!, b[n, i-1, p] + b[n-i, Min[n-i, i-1], p-1]/(i-1)!]];
a[n_] := b[n, n, n];
a /@ Range[0, 31] (* Jean-François Alcover, Dec 09 2020, after Alois P. Heinz *)
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 22 2019
STATUS
approved