login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of multinomials M(n-k; p_1-1, ..., p_k-1), where p = (p_1, ..., p_k) ranges over all partitions of n into distinct parts (k is a partition length).
7

%I #73 Jul 17 2023 12:35:39

%S 1,1,1,2,2,5,9,21,38,146,322,902,3106,8406,35865,123321,393691,

%T 1442688,7310744,23471306,129918661,500183094,2400722981,9592382321,

%U 47764284769,280267554944,1247781159201,7620923955225,36278364107926,189688942325418,1124492015730891

%N Sum of multinomials M(n-k; p_1-1, ..., p_k-1), where p = (p_1, ..., p_k) ranges over all partitions of n into distinct parts (k is a partition length).

%C Number of partitions of [n] such that each block contains its size as an element. So the block sizes have to be distinct. a(6) = 9: 123456, 12|3456, 1345|26, 1346|25, 1456|23, 1|23456, 1|24|356, 1|25|346, 1|26|345.

%H Alois P. Heinz, <a href="/A326493/b326493.txt">Table of n, a(n) for n = 0..731</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Multinomial_theorem#Multinomial_coefficients">Multinomial coefficients</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_(number_theory)">Partition (number theory)</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a>

%p with(combinat):

%p a:= n-> add(multinomial(n-nops(p), map(x-> x-1, p)[], 0),

%p p=select(l-> nops(l)=nops({l[]}), partition(n))):

%p seq(a(n), n=0..30);

%p # second Maple program:

%p b:= proc(n, i, p) option remember; `if`(i*(i+1)/2<n, 0, `if`(n=0, p!,

%p b(n, i-1, p)+b(n-i, min(n-i, i-1), p-1)/(i-1)!))

%p end:

%p a:= n-> b(n$3):

%p seq(a(n), n=0..31);

%t b[n_, i_, p_] := b[n, i, p] = If[i(i+1)/2 < n, 0, If[n==0, p!, b[n, i-1, p] + b[n-i, Min[n-i, i-1], p-1]/(i-1)!]];

%t a[n_] := b[n, n, n];

%t a /@ Range[0, 31] (* _Jean-François Alcover_, Dec 09 2020, after _Alois P. Heinz_ *)

%Y Cf. A000110, A007837, A327711, A327712, A362362, A363881, A364207, A364278.

%K nonn

%O 0,4

%A _Alois P. Heinz_, Sep 22 2019