login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A326492
Number of maximal subsets of {1..n} containing no quotients of pairs of distinct elements.
5
1, 1, 2, 2, 3, 3, 4, 4, 4, 5, 7, 7, 10, 10, 16, 18, 31, 31, 47, 47, 52, 62, 104, 104, 130, 159, 283, 283, 323, 323, 554, 554, 616, 690, 1248, 1366, 1871, 1871, 3567, 3759, 5245, 5245, 8678, 8678, 9808, 12148, 23352, 23352, 27470, 31695, 45719, 47187, 54595, 54595, 95383, 108199
OFFSET
0,3
FORMULA
a(n) = A326496(n) + 1 for n > 1. - Andrew Howroyd, Aug 30 2019
EXAMPLE
The a(0) = 1 through a(9) = 5 subsets:
{} {1} {1} {1} {1} {1} {1} {1} {1} {1}
{2} {23} {23} {235} {235} {2357} {23578} {23578}
{34} {345} {256} {2567} {25678} {256789}
{3456} {34567} {345678} {345678}
{456789}
MATHEMATICA
fasmax[y_]:=Complement[y, Union@@(Most[Subsets[#]]&/@y)];
Table[Length[fasmax[Select[Subsets[Range[n]], Intersection[#, Divide@@@Select[Tuples[#, 2], UnsameQ@@#&&Divisible@@#&]]=={}&]]], {n, 0, 10}]
CROSSREFS
Subsets with quotients are A326023.
Subsets with quotients > 1 are A326079.
Subsets without quotients are A327591.
Maximal subsets without differences or quotients are A326491.
Maximal subsets without quotients (or products) are A326496.
Sequence in context: A181988 A194173 A028825 * A132924 A076890 A103358
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 09 2019
EXTENSIONS
Terms a(16) and beyond from Andrew Howroyd, Aug 30 2019
STATUS
approved