login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A002990
Number of n-node trees with a forbidden limb of length 4.
(Formerly M0350)
1
1, 1, 1, 1, 2, 2, 5, 9, 19, 38, 86, 188, 439, 1026, 2472, 5997, 14835, 36964, 93246, 236922, 607111, 1565478, 4062797, 10599853, 27797420, 73224806, 193709710, 514406793, 1370937140, 3665714528, 9831891555, 26445886506, 71325268179
OFFSET
0,5
COMMENTS
A tree with a forbidden limb of length k is a tree where the path from any leaf inward hits a branching node or another leaf within k steps.
REFERENCES
A. J. Schwenk, Almost all trees are cospectral, pp. 275-307 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
G.f.: 1 + B(x) + (B(x^2) - B(x)^2)/2 where B(x) is g.f. of A052327.
a(n) ~ c * d^n / n^(5/2), where d = 2.9224691962496551739365155005926..., c = 0.503471518908815272581177797536... . - Vaclav Kotesovec, Aug 25 2014
MAPLE
with(numtheory):
g:= proc(n) g(n):= `if`(n=0, 1, add(add(d*(g(d-1)-
`if`(d=4, 1, 0)), d=divisors(j))*g(n-j), j=1..n)/n)
end:
a:= n-> `if`(n=0, 1, g(n-1)+(`if`(irem(n, 2, 'r')=0,
g(r-1), 0)-add(g(i-1)*g(n-i-1), i=1..n-1))/2):
seq(a(n), n=0..40); # Alois P. Heinz, Jul 06 2014
MATHEMATICA
g[n_] := g[n] = If[n == 0, 1, Sum[Sum[d*(g[d-1]-If[d == 4, 1, 0]), {d, Divisors[j] }]*g[n-j], {j, 1, n}]/n]; a[n_] := If[n == 0, 1, g[n-1] + (If[Mod[n, 2 ] == 0, g[Quotient[n, 2]-1], 0] - Sum[g[i-1]*g[n-i-1], {i, 1, n-1}])/2]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 26 2015, after Alois P. Heinz *)
KEYWORD
nonn
EXTENSIONS
More terms, formula and comments from Christian G. Bower, Dec 15 1999
STATUS
approved