Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I M0350 #35 Oct 21 2023 01:14:46
%S 1,1,1,1,2,2,5,9,19,38,86,188,439,1026,2472,5997,14835,36964,93246,
%T 236922,607111,1565478,4062797,10599853,27797420,73224806,193709710,
%U 514406793,1370937140,3665714528,9831891555,26445886506,71325268179
%N Number of n-node trees with a forbidden limb of length 4.
%C A tree with a forbidden limb of length k is a tree where the path from any leaf inward hits a branching node or another leaf within k steps.
%D A. J. Schwenk, Almost all trees are cospectral, pp. 275-307 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Alois P. Heinz, <a href="/A002990/b002990.txt">Table of n, a(n) for n = 0..1000</a>
%H A. J. Schwenk, <a href="/A002988/a002988.pdf">Letter to N. J. A. Sloane, Aug 1972</a>.
%H <a href="/index/Tra#trees">Index entries for sequences related to trees</a>
%F G.f.: 1 + B(x) + (B(x^2) - B(x)^2)/2 where B(x) is g.f. of A052327.
%F a(n) ~ c * d^n / n^(5/2), where d = 2.9224691962496551739365155005926..., c = 0.503471518908815272581177797536... . - _Vaclav Kotesovec_, Aug 25 2014
%p with(numtheory):
%p g:= proc(n) g(n):= `if`(n=0, 1, add(add(d*(g(d-1)-
%p `if`(d=4, 1, 0)), d=divisors(j))*g(n-j), j=1..n)/n)
%p end:
%p a:= n-> `if`(n=0, 1, g(n-1)+(`if`(irem(n, 2, 'r')=0,
%p g(r-1), 0)-add(g(i-1)*g(n-i-1), i=1..n-1))/2):
%p seq(a(n), n=0..40); # _Alois P. Heinz_, Jul 06 2014
%t g[n_] := g[n] = If[n == 0, 1, Sum[Sum[d*(g[d-1]-If[d == 4, 1, 0]), {d, Divisors[j] }]*g[n-j], {j, 1, n}]/n]; a[n_] := If[n == 0, 1, g[n-1] + (If[Mod[n, 2 ] == 0, g[Quotient[n, 2]-1], 0] - Sum[g[i-1]*g[n-i-1], {i, 1, n-1}])/2]; Table[a[n], {n, 0, 40}] (* _Jean-François Alcover_, Feb 26 2015, after _Alois P. Heinz_ *)
%Y Cf. A002955, A002988, A002989, A002990, A002991, A002992.
%Y Cf. A052318, A052319, A052320.
%Y Cf. A052321, A052322, A052323, A052324, A052325, A052326.
%Y Cf. A052327, A052328, A052329.
%K nonn
%O 0,5
%A _N. J. A. Sloane_
%E More terms, formula and comments from _Christian G. Bower_, Dec 15 1999