login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052325
Number of asymmetric rooted trees with a forbidden limb of length 3.
3
1, 1, 1, 1, 1, 2, 4, 8, 15, 30, 60, 122, 249, 513, 1061, 2210, 4620, 9708, 20472, 43337, 92023, 196018, 418653, 896485, 1924154, 4139014, 8921349, 19266067, 41679483, 90318082, 196020800, 426055601, 927317334, 2020949226, 4409764169
OFFSET
1,6
COMMENTS
A rooted tree with a forbidden limb of length k is a rooted tree where the path from any leaf inward hits a branching node or the root within k steps.
FORMULA
a(n) satisfies a = SHIFT_RIGHT(WEIGH(a-b)) where b(3)=1, b(k)=0 if k != 3.
a(n) ~ c * d^n / n^(3/2), where d = 2.27671458388797627098091744865..., c = 0.2935911773459468433271794078... . - Vaclav Kotesovec, Aug 25 2014
MAPLE
b:= proc(n, i) option remember;
`if`(n=0, 1, `if`(i<1, 0, add(binomial(a(i)-
`if`(i=3, 1, 0), j)*b(n-i*j, i-1), j=0..n/i)))
end:
a:= n-> `if`(n<1, 1, b(n-1, n-1)):
seq(a(n), n=1..50); # Alois P. Heinz, Jul 06 2014
MATHEMATICA
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[a[i]- If[i==3, 1, 0], j]*b[n-i*j, i-1], {j, 0, n/i}]]];
a[n_] := If[n<1, 1, b[n-1, n-1]];
Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Mar 01 2016, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,eigen
AUTHOR
Christian G. Bower, Dec 15 1999
STATUS
approved