login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060405
Sum of n-th Lucas number (A000032(n)) and n-th Pell number (A000129(n)).
2
2, 2, 5, 9, 19, 40, 88, 198, 455, 1061, 2501, 5940, 14182, 33982, 81625, 196389, 473039, 1140260, 2749988, 6634458, 16009555, 38638441, 93261961, 225122760, 543443402, 1311905882, 3167087405, 7645809249, 18458266699, 44561632000
OFFSET
0,1
FORMULA
From Colin Barker, Jun 22 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-3) - a(n-4).
G.f.: (2-4*x-x^2)/((1-x-x^2)*(1-2*x-x^2)). (End)
a(n) = A000129(n) + A000032(n). - Jonathan Vos Post, Sep 02 2013
EXAMPLE
a(6) = Lucas(6) + Pell(6) = 18 + 70 = 88.
MAPLE
gfpell := x/(1-2*x-x^2): gfluc := (2-x)/(1-x-x^2): s := series(gfpell+gfluc, x, 100): for i from 0 to 60 do printf(`%d, `, coeff(s, x, i)) od:
MATHEMATICA
LinearRecurrence[{3, 0, -3, -1}, {2, 2, 5, 9}, 30] (* Harvey P. Dale, Jun 05 2017 *)
PROG
(Magma) I:=[2, 2, 5, 9]; [n le 4 select I[n] else 3*Self(n-1)-3*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Juan 07 2017
CROSSREFS
Cf. A000032, A000129, A001932, A226638 Product of Pell and Lucas numbers.
Sequence in context: A302483 A052969 A002990 * A326493 A003228 A184713
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Apr 05 2001
EXTENSIONS
More terms from James A. Sellers, Apr 06 2001
STATUS
approved