Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #34 Mar 09 2024 13:00:45
%S 2,2,5,9,19,40,88,198,455,1061,2501,5940,14182,33982,81625,196389,
%T 473039,1140260,2749988,6634458,16009555,38638441,93261961,225122760,
%U 543443402,1311905882,3167087405,7645809249,18458266699,44561632000
%N Sum of n-th Lucas number (A000032(n)) and n-th Pell number (A000129(n)).
%H Vincenzo Librandi, <a href="/A060405/b060405.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (3,0,-3,-1).
%F From _Colin Barker_, Jun 22 2012: (Start)
%F a(n) = 3*a(n-1) - 3*a(n-3) - a(n-4).
%F G.f.: (2-4*x-x^2)/((1-x-x^2)*(1-2*x-x^2)). (End)
%F a(n) = A000129(n) + A000032(n). - _Jonathan Vos Post_, Sep 02 2013
%e a(6) = Lucas(6) + Pell(6) = 18 + 70 = 88.
%p gfpell := x/(1-2*x-x^2): gfluc := (2-x)/(1-x-x^2): s := series(gfpell+gfluc, x, 100): for i from 0 to 60 do printf(`%d,`,coeff(s,x,i)) od:
%t LinearRecurrence[{3,0,-3,-1},{2,2,5,9},30] (* _Harvey P. Dale_, Jun 05 2017 *)
%o (Magma) I:=[2,2,5,9]; [n le 4 select I[n] else 3*Self(n-1)-3*Self(n-3)-Self(n-4): n in [1..30]]; // _Vincenzo Librandi_, Juan 07 2017
%Y Cf. A000032, A000129, A001932, A226638 Product of Pell and Lucas numbers.
%K nonn,easy
%O 0,1
%A _N. J. A. Sloane_, Apr 05 2001
%E More terms from _James A. Sellers_, Apr 06 2001