login
A060402
Continued fraction expansion of tanh(Pi).
3
0, 1, 267, 4, 14, 1, 2, 1, 2, 2, 1, 2, 3, 8, 3, 1, 5, 4, 1, 14, 10, 1, 20, 38, 1, 2, 7, 5, 2, 1, 10, 1, 6, 1, 6, 1, 2, 3, 2, 1, 7, 1, 1, 5, 12, 2, 1, 1, 1, 2, 1, 1, 1, 34, 1, 8, 1, 33, 1, 4, 7, 1, 2, 56, 1, 3, 1, 34, 9, 1, 1, 7, 1, 3, 1, 7, 1, 4, 3, 1, 2, 14, 1, 10, 2, 51, 1, 6, 7, 17, 1, 14, 1, 8, 1, 1
OFFSET
0,3
REFERENCES
J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 11.
LINKS
EXAMPLE
0.996272076220749944264690... = 0 + 1/(1 + 1/(267 + 1/(4 + 1/(14 + ...)))). - Harry J. Smith, Jul 04 2009
MAPLE
with(numtheory): c := cfrac (tanh(Pi), 300, 'quotients');
MATHEMATICA
ContinuedFraction[Tanh[Pi], 100] (* Paolo Xausa, Jul 04 2024 *)
PROG
(PARI) { allocatemem(932245000); default(realprecision, 21000); x=contfrac(tanh(Pi)); for (n=0, 20000, write("b060402.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jul 04 2009
CROSSREFS
Sequence in context: A278625 A144662 A278307 * A306120 A232106 A049014
KEYWORD
nonn,cofr,easy
AUTHOR
Bill Gosper, Apr 04 2001
EXTENSIONS
More terms from James A. Sellers, Apr 06 2001
STATUS
approved