login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A190352
The continued fraction expansion of tanh(Pi) requires the computation of the pairs (p_n, q_n); sequence gives values of q_n.
2
1, 1, 268, 1073, 15290, 16363, 48016, 64379, 176774, 417927, 594701, 1607329, 5416688, 44940833, 140239187, 185180020, 1066139287, 4449737168, 5515876455, 81672007538, 822235951835, 903907959373, 18900395139295, 719118923252583, 738019318391878
OFFSET
0,3
COMMENTS
a(2) = 268 explains the comment in A021085 that "The decimal expansion of Sum_{n>=1} floor(n * tanh(Pi))/10^n is the same as that of 1/81 for the first 268 decimal places [Borwein et al.]".
REFERENCES
J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 13.
LINKS
FORMULA
a(n) = A060402(n)*a(n-1) + a(n-2) for n >= 2. - Nathaniel Johnston, May 10 2011
MAPLE
lim:=50: with(numtheory): cfr := cfrac(tanh(Pi), lim+10, 'quotients'): q[0]:=1:q[1]:=cfr[2]: printf("%d, %d, ", q[0], q[1]): for n from 2 to lim do q[n]:=cfr[n+1]*q[n-1]+q[n-2]: printf("%d, ", q[n]): od: # Nathaniel Johnston, May 10 2011
MATHEMATICA
a[0] := 1; a[1] := 1; A060402:= ContinuedFraction[Tanh[Pi], 100];
a[n_]:= a[n] = A060402[[n + 1]]*a[n - 1] + a[n - 2]; Join[{1, 1}, Table[a[n], {n, 2, 75}]] (* G. C. Greubel, Apr 05 2018 *)
CROSSREFS
Sequence in context: A194774 A279184 A237228 * A235175 A235169 A352474
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, May 09 2011
EXTENSIONS
a(4)-a(24) from Nathaniel Johnston, May 10 2011
STATUS
approved