|
|
A190352
|
|
The continued fraction expansion of tanh(Pi) requires the computation of the pairs (p_n, q_n); sequence gives values of q_n.
|
|
2
|
|
|
1, 1, 268, 1073, 15290, 16363, 48016, 64379, 176774, 417927, 594701, 1607329, 5416688, 44940833, 140239187, 185180020, 1066139287, 4449737168, 5515876455, 81672007538, 822235951835, 903907959373, 18900395139295, 719118923252583, 738019318391878
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
a(2) = 268 explains the comment in A021085 that "The decimal expansion of Sum_{n>=1} floor(n * tanh(Pi))/10^n is the same as that of 1/81 for the first 268 decimal places [Borwein et al.]".
|
|
REFERENCES
|
J. M. Borwein, D. H. Bailey and R. Girgensohn, Experimentation in Mathematics, A K Peters, Ltd., Natick, MA, 2004. x+357 pp. See p. 13.
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..1920
|
|
FORMULA
|
a(n) = A060402(n)*a(n-1) + a(n-2) for n >= 2. - Nathaniel Johnston, May 10 2011
|
|
MAPLE
|
lim:=50: with(numtheory): cfr := cfrac(tanh(Pi), lim+10, 'quotients'): q[0]:=1:q[1]:=cfr[2]: printf("%d, %d, ", q[0], q[1]): for n from 2 to lim do q[n]:=cfr[n+1]*q[n-1]+q[n-2]: printf("%d, ", q[n]): od: # Nathaniel Johnston, May 10 2011
|
|
MATHEMATICA
|
a[0] := 1; a[1] := 1; A060402:= ContinuedFraction[Tanh[Pi], 100];
a[n_]:= a[n] = A060402[[n + 1]]*a[n - 1] + a[n - 2]; Join[{1, 1}, Table[a[n], {n, 2, 75}]] (* G. C. Greubel, Apr 05 2018 *)
|
|
CROSSREFS
|
Cf. A060402, A021085.
Sequence in context: A194774 A279184 A237228 * A235175 A235169 A352474
Adjacent sequences: A190349 A190350 A190351 * A190353 A190354 A190355
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
N. J. A. Sloane, May 09 2011
|
|
EXTENSIONS
|
a(4)-a(24) from Nathaniel Johnston, May 10 2011
|
|
STATUS
|
approved
|
|
|
|