login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A352474
a(n) is the number of different ways to partition the set of vertices of a convex n-gon into 3 intersecting polygons.
0
268, 2055, 10285, 42515, 157911, 548912, 1826846, 5902458, 18679974, 58255005, 179762211, 550473301, 1676299353, 5083919214, 15372833564, 46383749572, 139730014800, 420448279875, 1264071072745, 3798101946855, 11406989330923, 34248214094780
OFFSET
9,1
FORMULA
a(n) = b(n) - n*(n-1)*(n-7)*(n-8)/12, where b(n) = 3*b(n-1)+C(n-1,2)*(2^(n-4)+2-n-C(n-3,2)) for n > 8 and b(8) = 0. b(n) is given in A272982.
a(n) = A272982(n) - A350116(n-8).
G.f.: x^9*(268 - 1697*x + 4295*x^2 - 5592*x^3 + 4008*x^4 - 1520*x^5 + 240*x^6)/((1 - x)^5*(1 - 2*x)^3*(1 - 3*x)). - Stefano Spezia, Mar 19 2022
EXAMPLE
The set of vertices of a convex 11-gon can be partitioned into 3 polygons in 10395 different ways:
- as 2 triangles and 1 pentagon ((1/2!)*C(11,3)*C(8,3)*C(5,5) = 4620 different ways) or
- as 1 triangle and 2 quadrilaterals ((1/2!)*C(11,3)*C(8,4)*C(4,4) = 5775 different ways).
Subtracting the A350116(11-8) = 110 nonintersecting partitions leaves a(11)=10285.
PROG
(PARI) b(n) = if (n==8, 0, 3*b(n-1)+binomial(n-1, 2)*(2^(n-4)+2-n-binomial(n-3, 2)));
a(n) = b(n) - n*(n-1)*(n-7)*(n-8)/12; \\ Michel Marcus, Mar 19 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Janaka Rodrigo, Mar 17 2022
STATUS
approved